1. A multiphase eigenvalue problem on a stratified Lie groupDebajyoti Choudhuri, Leandro S. Tavares, Dušan Repovš, 2024, izvirni znanstveni članek Povzetek: We consider a multiphase spectral problem on a stratified Lie group.We prove the existence of an eigenfunction of $(2, q)$-eigenvalue problem on a bounded domain. Furthermore, we also establish a Pohozaev-like identity corresponding to the problem on the Heisenberg group. Ključne besede: multiphase spectral problem, stratified Lie group, Heisenberg group, left invariant vector field, (2, q)-eigenvalue problem Objavljeno v DiRROS: 15.11.2024; Ogledov: 105; Prenosov: 41 Celotno besedilo (334,31 KB) Gradivo ima več datotek! Več... |
2. Analysis of eigenvalue condition numbers for a class of randomized numerical methods for singular matrix pencilsDaniel Kressner, Bor Plestenjak, 2024, izvirni znanstveni članek Povzetek: The numerical solution of the generalized eigenvalue problem for a singular matrix pencil is challenging due to the discontinuity of its eigenvalues. Classically, such problems are addressed by first extracting the regular part through the staircase form and then applying a standard solver, such as the QZ algorithm, to that regular part. Recently, several novel approaches have been proposed to transform the singular pencil into a regular pencil by relatively simple randomized modifications. In this work, we analyze three such methods by Hochstenbach, Mehl, and Plestenjak that modify, project, or augment the pencil using random matrices. All three methods rely on the normal rank and do not alter the finite eigenvalues of the original pencil. We show that the eigenvalue condition numbers of the transformed pencils are unlikely to be much larger than the ▫$\delta$▫-weak eigenvalue condition numbers, introduced by Lotz and Noferini, of the original pencil. This not only indicates favorable numerical stability but also reconfirms that these condition numbers are a reliable criterion for detecting simple finite eigenvalues. We also provide evidence that, from a numerical stability perspective, the use of complex instead of real random matrices is preferable even for real singular matrix pencils and real eigenvalues. As a side result, we provide sharp left tail bounds for a product of two independent random variables distributed with the generalized beta distribution of the first kind or Kumaraswamy distribution. Ključne besede: singular pencil, singular generalized eigenvalue problem, eigenvalue condition number, randomized numerical method, random matrices Objavljeno v DiRROS: 26.08.2024; Ogledov: 241; Prenosov: 105 Celotno besedilo (659,18 KB) Gradivo ima več datotek! Več... |
3. Pairs of fixed points for a class of operators on Hilbert spacesAbdelhak Mokhtari, Kamel Saoudi, Dušan Repovš, 2024, izvirni znanstveni članek Povzetek: In this paper, existence of pairs of solutions is obtained for compact potential operators on Hilbert spaces. An application to a second-order boundary value problem is also given as an illustration of our results. Ključne besede: Hilbert spaces, potential operators, genus, fixed point theorem, boundary value problem Objavljeno v DiRROS: 26.08.2024; Ogledov: 276; Prenosov: 123 Celotno besedilo (317,15 KB) Gradivo ima več datotek! Več... |
4. |
5. The Waring problem for matrix algebras, IIMatej Brešar, Peter Šemrl, 2023, izvirni znanstveni članek Povzetek: Let $f$ be a noncommutative polynomial of degree $m\ge 1$ over an algebraically closed field $F$ of characteristic $0$. If $n\ge m-1$ and $\alpha_1,\alpha_2,\alpha_3$ are nonzero elements from $F$ such that $\alpha_1+\alpha_2+\alpha_3=0$, then every trace zero $n\times n$ matrix over $F$ can be written as $\alpha_1 A_1+\alpha_2A_2+\alpha_3A_3$ for some $A_i$ in the image of $f$ in $M_n(F)$. Ključne besede: Waring problem, noncommutatative polynomials, matrix algebras Objavljeno v DiRROS: 10.04.2024; Ogledov: 463; Prenosov: 206 Celotno besedilo (133,03 KB) Gradivo ima več datotek! Več... |
6. The Calabi-Yau problem for minimal surfaces with Cantor endsFranc Forstnerič, 2023, izvirni znanstveni članek Povzetek: We show that every connected compact or bordered Riemann surface contains a Cantor set whose complement admits a complete conformal minimal immersion in ${\mathbb R}^3$ with bounded image. The analogous result holds for holomorphic immersions into any complex manifold of dimension at least $2$, for holomorphic null immersions into ${\mathbb C}^n$ with $n \ge 3$, for holomorphic Legendrian immersions into an arbitrary complex contact manifold, and for superminimal immersions into any selfdual or anti-self-dual Einstein four-manifold. Ključne besede: minimal surfaces, Calabi–Yau problem, null curve, Legendrian curve Objavljeno v DiRROS: 08.04.2024; Ogledov: 444; Prenosov: 195 Celotno besedilo (516,47 KB) Gradivo ima več datotek! Več... |
7. On the concentration-compactness principle for anisotropic variable exponent Sobolev spaces and its applicationsNabil Chems Eddine, Maria Alessandra Ragusa, Dušan Repovš, 2024, izvirni znanstveni članek Povzetek: We obtain critical embeddings and the concentration-compactness principle for the anisotropic variable exponent Sobolev spaces. As an application of these results,we confirm the existence of and find infinitely many nontrivial solutions for a class of nonlinear critical anisotropic elliptic equations involving variable exponents and two real parameters. With the groundwork laid in this work, there is potential for future extensions, particularly in extending the concentration-compactness principle to anisotropic fractional order Sobolev spaces with variable exponents in bounded domains. This extension could find applications in solving the generalized fractional Brezis–Nirenberg problem. Ključne besede: Sobolev embeddings, concentration-compactness principle, anisotropic variable exponent Sobolev spaces, p(x)-Laplacian, fractional Brezis-Nirenberg problem Objavljeno v DiRROS: 20.03.2024; Ogledov: 673; Prenosov: 579 Celotno besedilo (550,73 KB) Gradivo ima več datotek! Več... |
8. Bordering of symmetric matrices and an application to the minimum number of distinct eigenvalues for the join of graphsAida Abiad, Shaun M. Fallat, Mark Kempton, Rupert H. Levene, Polona Oblak, Helena Šmigoc, Michael Tait, Kevin N. Vander Meulen, 2023, izvirni znanstveni članek Ključne besede: inverse eigenvalue problem, minimum number of distinct eigenvalues, borderings, joins of graphs, paths, cycles, hypercubes Objavljeno v DiRROS: 18.03.2024; Ogledov: 567; Prenosov: 230 Celotno besedilo (485,46 KB) Gradivo ima več datotek! Več... |
9. The liberation set in the inverse eigenvalue problem of a graphJephian C.-H. Lin, Polona Oblak, Helena Šmigoc, 2023, izvirni znanstveni članek Povzetek: The inverse eigenvalue problem of a graph $G$ is the problem of characterizing all lists of eigenvalues of real symmetric matrices whose off-diagonal pattern is prescribed by the adjacencies of $G$. The strong spectral property is a powerful tool in this problem, which identifies matrices whose entries can be perturbed while controlling the pattern and preserving the eigenvalues. The Matrix Liberation Lemma introduced by Barrett et al. in 2020 advances the notion to a more general setting. In this paper we revisit the Matrix Liberation Lemma and prove an equivalent statement, that reduces some of the technical difficulties in applying the result. We test our method on matrices of the form $M=A \oplus B$ and show how this new approach supplements the results that can be obtained from the strong spectral property only. While extending this notion to the direct sums of graphs, we discover a surprising connection with the zero forcing game on Cartesian products of graphs. Throughout the paper we apply our results to resolve a selection of open cases for the inverse eigenvalue problem of a graph on six vertices. Ključne besede: symmetric matrix, inverse eigenvalue problem, strong spectral property, Matrix Liberation Lemma, zero forcing Objavljeno v DiRROS: 14.03.2024; Ogledov: 434; Prenosov: 203 Celotno besedilo (626,24 KB) Gradivo ima več datotek! Več... |
10. Strong edge geodetic problem on complete multipartite graphs and some extremal graphs for the problemSandi Klavžar, Eva Zmazek, 2024, izvirni znanstveni članek Povzetek: A set of vertices $X$ of a graph $G$ is a strong edge geodetic set if to any pair of vertices from $X$ we can assign one (or zero) shortest path between them such that every edge of $G$ is contained in at least one on these paths. The cardinality of a smallest strong edge geodetic set of $G$ is the strong edge geodetic number ${\rm sg_e}(G)$ of $G$. In this paper, the strong edge geodetic number of complete multipartite graphs is determined. Graphs $G$ with ${\rm sg_e}(G) = n(G)$ are characterized and ${\rm sg_e}$ is determined for Cartesian products $P_n\,\square\, K_m$. The latter result in particular corrects an error from the literature. Ključne besede: strong edge geodetic problem, complete multipartite graph, edge-coloring, Cartesian product of graphs Objavljeno v DiRROS: 19.02.2024; Ogledov: 507; Prenosov: 237 Celotno besedilo (430,75 KB) Gradivo ima več datotek! Več... |