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Abstract
The numerical solution of the generalized eigenvalue problem for a singular matrix
pencil is challenging due to the discontinuity of its eigenvalues. Classically, such
problems are addressed by first extracting the regular part through the staircase form
and then applying a standard solver, such as the QZ algorithm, to that regular part.
Recently, several novel approaches have been proposed to transform the singular pencil
into a regular pencil by relatively simple randomized modifications. In this work,
we analyze three such methods by Hochstenbach, Mehl, and Plestenjak that modify,
project, or augment the pencil using random matrices. All three methods rely on the
normal rank and do not alter the finite eigenvalues of the original pencil. We show
that the eigenvalue condition numbers of the transformed pencils are unlikely to be
much larger than the δ-weak eigenvalue condition numbers, introduced by Lotz and
Noferini, of the original pencil. This not only indicates favorable numerical stability
but also reconfirms that these condition numbers are a reliable criterion for detecting
simple finite eigenvalues. We also provide evidence that, from a numerical stability
perspective, the use of complex instead of real random matrices is preferable even for
real singular matrix pencils and real eigenvalues. As a side result, we provide sharp
left tail bounds for a product of two independent random variables distributed with
the generalized beta distribution of the first kind or Kumaraswamy distribution.
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1 Introduction

The purpose of this work is to study three recent numerical methods, introduced in
[12, 13], for computing finite eigenvalues of a square singular matrix pencil A − λB,
that is, A, B ∈ C

n×n and det(A − λB) ≡ 0. We say that λ0 ∈ C is an eigenvalue of
A − λB if rank(A − λ0B) < nrank(A, B), where

nrank(A, B) := max
ζ∈C rank(A − ζ B) < n

is the normal rank of the pencil. Similarly, if rank(B) < nrank(A, B) then we say that
A − λB has infinite eigenvalue(s).

A major difficulty when working with a singular pencil numerically is the disconti-
nuity of its eigenvalues, that is, the existence of (arbitrarily small) perturbations of A, B
that completely destroy the eigenvalue accuracy. To circumvent this phenomenon, it
is common to first extract the regular part from the staircase form of the pencil [28]
before applying the QZ algorithm [15, 22] to compute the eigenvalues. Notably, the
popular software GUPTRI [2, 3] is based on this approach. Numerically, the compu-
tation of the staircase form requires several rank decisions and these decisions tend to
become increasingly difficult as the algorithm proceeds, which can ultimately lead to
a failure of correctly identifying and extracting the regular part [7, 23].

Despite the discontinuity of the eigenvalues mentioned above, Wilkinson [30]
observed that the QZ algorithm directly applied to the original singular pencil usually
returns the eigenvalues of the regular part with reasonable accuracy. De Terán, Dopico,
and Moro [1] explained this phenomenon by developing a perturbation theory for sin-
gular pencils, implying that the set of perturbation directions causing discontinuous
eigenvalue changes has measure zero. Later on, Lotz and Noferini [18] turned this
theory into quantitative statements, by measuring the set of perturbations leading to
large eigenvalue changes and defining the notion ofweak eigenvalue condition number
for singular pencils.

It is important to note that Wilkinson’s observation does not immediately lead
to a practical algorithm, because the (approximate) eigenvalues returned by the QZ
algorithm are mixed with the spurious eigenvalues originating from the (perturbed)
singular part and it is a nontrivial task to distinguish these two sets. During the last
few years, several methods have been proposed to circumvent this difficulty.

Inspired by the findings in [1], Hochstenbach, Mehl, and Plestenjak [12] proposed
to introduce a modification of the form

˜A − λ˜B := A − λB + τ (UDAV
∗ − λUDBV

∗) (1)
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for matrices DA, DB ∈ C
k×k with k := n − nrank(A, B), random matrices U , V ∈

C
n×k , and a scalar τ �= 0. Generically, ˜A− λ˜B is a regular pencil and the regular part

of A − λB is exactly preserved, i.e., if λi is a finite eigenvalue of A − λB then λi is
an eigenvalue of ˜A − λ˜B with the same partial multiplicities. More specifically, λi is
an eigenvalue of A − λB if and only if λi is an eigenvalue of ˜A − λ˜B such that its
right/left eigenvectors x , y satisfy V ∗x = 0 and U∗y = 0. The latter property is used
to extract the eigenvalues of A − λB from the computed eigenvalues of ˜A − λ˜B.

In [13], two different variations of the approach from [12] described above are
proposed. Instead of adding a modification, the pencil is projected to the generically
regular pencilU∗⊥AV⊥ −λU∗⊥BV⊥ for random matricesU⊥, V⊥ ∈ C

n×(n−k), and the
eigenvalues of A − λB are extracted from the computed eigenvalues of the smaller
pencil. The third method analyzed in this work consists of computing the eigenvalues
of A − λB from the augmented generically regular pencil

[

A UTA
SAV ∗ 0

]

− λ

[

B UTB
SBV ∗ 0

]

,

where SA, SB , TA, TB ∈ C
k×k and U , V ∈ C

n×k are random matrices. For both
variants, it holds generically that the regular part of A−λB is fully preserved in exact
arithmetic. Note that roundoff error affects this eigenvalue preservation property when
forming the modified pencils (1) and U∗⊥AV⊥ − λU∗⊥BV⊥ in finite precision.

One goal of this work is to show that the modifications introduced by the three
methods above are numerically safe. More specifically, we show that, with high prob-
ability, the eigenvalue condition numbers of the modified pencils are not much larger
than the weak eigenvalue condition numbers of the original pencil. In particular, these
methods can be expected to return good accuracy for well-conditioned eigenvalues of
A − λB in the presence of roundoff error. Another implication of our result is that
the eigenvalue condition numbers of the modified pencils represent a reliable com-
plementary criterion for identifying reasonably well-conditioned finite eigenvalues in
any of the algorithms from [12, 13].

Related work Closer to the analyses in [1, 18], it was recently suggested in [17] to
perturb the full pencil: A+τ E−λ(B+τ F), where E, F ∈ C

n×n are randomGaussian
matrices and τ > 0 is small but well above the level of machine precision. Unlike for
the three methods mentioned above, the regular part of A−λB is not preserved by this
perturbation. On the other hand, the direct connection to [18] allows to facilitate their
analysis and use the computed eigenvalue condition numbers of the perturbed pencil as
a criterion to identify finite eigenvalues of the original pencil. In [17, P. 2], it was stated
that a similar analysis would be more difficult for the method from [12] because of
the structure imposed on the random perturbation in (1). In this work, we will address
this question and carry over the analysis from [17, 18] to the three methods above. In
particular, our analysis confirms that the computed eigenvalue condition numbers can
be used as a reliable indicator for such algorithms as well.

Outline The structure of the paper is as follows. In Sect. 2 we review basic concepts for
singular pencils as well as δ-weak condition numbers. In Sect. 3 we present the three
randomized numerical methods that we analyze in Sect. 4, where we also obtain the
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new left tail bounds. This is followed by numerical examples in Sect. 5. In the appendix
we provide results obtained with symbolic computation that verify the results from
latter sections.

2 Preliminaries

2.1 Reducing subspaces and eigenvectors

In order to define eigenvectors of a singular pencil according to [1, 18], we first
introduce the Kronecker canonical form (KCF) and the notion of minimal reducing
subspaces, see, e.g., [9, 29].

Theorem 1 (Kronecker canonical form) Let A, B ∈ C
n×n. Then there exist nonsingu-

lar matrices P, Q ∈ C
n×n such that

P (A − λB) Q =
[

R(λ) 0
0 S(λ)

]

, R(λ) =
[

J − λIr 0
0 Is − λN

]

, (2)

where J and N are in Jordan canonical form with N nilpotent. Furthermore,

S(λ) = diag
(

Lm1(λ), . . . , Lmk (λ), Ln1(λ)T , . . . , Lnk (λ)T
)

,

where L j (λ) = [0 I j ]−λ [I j 0] is of size j×( j+1), and mi , ni ≥ 0 for i = 1, . . . , k,
where k = n − nrank(A, B).

The pencil R(λ) in (2) is called the regular part of A − λB and contains the
eigenvalues of A − λB, where the Jordan part J − λIr contains the Jordan blocks
of the finite eigenvalues of A − λB. If λ0 is a finite eigenvalue of A − λB, then its
partial multiplicities are the sizes of the Jordan blocks associated with λ0. A finite
eigenvalue is called simple if it is a simple root of det R(λ). The pencil S(λ) is called
the singular part of A − λB and contains right singular blocks Lm1(λ), . . . , Lmk (λ)

and left singular blocks Ln1(λ)T , . . . , Lnk (λ)T , wherem1, . . . ,mk and n1, . . . , nk are
called the right and left minimal indices of the pencil, respectively.

We say that a subspace M is a reducing subspace [29] for the pencil A − λB if
dim(AM+ BM) = dim(M)− k, where k = n−nrank(A, B) counts the number of
right singular blocks. The minimal reducing subspaceMRS(A, B) is the intersection
of all reducing subspaces and is spanned by the columns of Q corresponding to the
blocks Lm1(λ), . . . , Lmk (λ). Analogously, L is a left reducing subspace for the pencil
A − λB if dim(A∗L + B∗L) = dim(L) − k and the minimal left reducing subspace
LRS(A, B) is the intersection of all left reducing subspaces.

For an eigenvalue λ0 ∈ C of A − λB, a nonzero vector x ∈ C
n is called a right

eigenvector if (A − λ0B)x = 0 and x /∈ MRS(A, B). A nonzero vector y ∈ C
n such

that y∗(A − λ0B) = 0 and y /∈ LRS(A, B) is called a left eigenvector. This agrees
with the definition of eigenvectors from [5, 18]. Compared to a regular pencil, the
eigenvectors of singular pencils have a much larger degree of non-uniqueness, due to
components from the minimal reducing subspaces.
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2.2 Eigenvalue perturbation theory

Suppose that we perturb an n × n matrix pencil A − λB into

˜A − λ˜B := A + εE − λ(B + εF), (3)

where ε > 0. We define ‖(E, F)‖ := (‖E‖2F + ‖F‖2F )1/2, where ‖ · ‖F denotes the
Frobenius norm of a matrix. When ‖(E, F)‖ = 1 we can identify the pencil E − λF
with a point on the unit sphere in C

2n2 and think of (E, F) as a direction of the
perturbation (3).

Before addressing the singular case, let us first recall the classical eigenvalue per-
turbation theory [27] for a regular pencil A−λB. Consider a simple finite eigenvalue
λ0 ∈ C of A − λB with normalized right/left eigenvectors x , y. For ‖(E, F)‖ = 1
and sufficiently small ε > 0 there exists an eigenvalue λ0(ε) of the perturbed pencil
(3) satisfying the perturbation expansion

|λ0(ε) − λ0| = |y∗(E − λ0F)x |
|y∗Bx | ε + O(ε2) ≤ (1 + |λ0|2)1/2

|y∗Bx | ε + O(ε2) (4)

as ε → 0. Note that the inequality becomes an equality for the direction E = (1 +
|λ0|2)−1/2yx∗, F = −λ0E . In turn, the absolute condition number of λ0, defined as

κ(λ0) = lim
ε→0

sup
‖(E,F)‖≤1

1

ε
|λ0(ε) − λ0|, (5)

satisfies

κ(λ0) = 1/γ (λ0), where γ (λ0) = |y∗Bx |(1 + |λ0|2)−1/2; (6)

see, e.g., [8, Lemma 3.1 and Eq. (3.3)].
For a singular pencil, the definition (5) always leads to an infinite condition num-

ber because of the discontinuity of eigenvalues. To address this, we first recall the
eigenvalue expansion by De Terán, Dopico, and Moro [1, Corollary 2].

Theorem 2 Let λ0 be a finite simple eigenvalue of an n × n pencil A − λB of normal
rank n − k, k ≥ 1. Let X = [X1 x], Y = [Y1 y] be n × (k + 1) matrices with
orthonormal columns such that: X1 is a basis for ker(A − λ0B) ∩ MRS(A, B), X is
a basis for ker(A− λ0B), Y1 is a basis for ker((A− λ0B)∗) ∩LRS(A, B), and Y is a
basis for ker((A − λ0B)∗). If E − λF is such that det(Y ∗

1 (E − λ0F)X1) �= 0, then,
for sufficiently small ε > 0, there exists an eigenvalue λ0(ε) of the perturbed pencil
(3) such that

λ0(ε) = λ0 − det(Y ∗(E − λ0F)X)

y∗Bx · det(Y ∗
1 (E − λ0F)X1)

ε + O(ε2). (7)
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The expansion (7) allows one to define the directional sensitivity for perturbations
E − λF , ‖(E, F)‖ = 1, satisfying the condition of Theorem 2:

σE,F (λ0) =
∣

∣

∣

∣

det(Y ∗(E − λ0F)X)

y∗Bx · det(Y ∗
1 (E − λ0F)X1)

∣

∣

∣

∣

; (8)

see [18, Definition 2.4 and Corollary 3.3]. We can now generalize the definition of
γ (λ0) in (6) to singular pencils byusing the right/left eigenvectors x , y fromTheorem2.
Because of the appearance of the factor y∗Bx in the denominator of (8), we expect
that the quantity 1/γ (λ0) continues to play a crucial role in determining the sensitivity
of an eigenvalue. However, it is important to note that x, y are particular choices of
eigenvectors made in Theorem 2: the right eigenvector x is orthogonal to the right
minimal reducing subspace MRS and the left eigenvector y is orthogonal to LMR.
Under these constraints, the eigenvectors x and y of the simple eigenvalue λ0 become
uniquely determined up to multiplication by unit complex numbers. It follows from
Y ∗
1 BX1 = 0, Y ∗

1 Bx = 0 and y∗BX1 = 0 that this particular choice maximizes
|y∗Bx |, i.e., for all vectors z and w such that ‖z‖2 = ‖w‖2 = 1, (A − λ0B)z = 0,
and w∗(A − λ0B) = 0, it holds that

|w∗Bz|(1 + |λ0|2)−1/2 ≤ γ (λ0). (9)

Remark 3 If A, B are real matrices and λ0 is a real simple eigenvalue, then thematrices
X , X1,Y ,Y1 and vectors x, y in Theorem 2 can be chosen to be real as well.

Clearly, the perturbations forwhich the quantity det(Y ∗
1 (E−λ0F)X1) in the denom-

inator of (7) vanishes form a set of measure zero in the unit sphere in C
2n2 . In other

words, this event has zero probability if we draw (E, F) uniformly at random from the
the unit sphere inC2n2 , which wewill denote by (E, F) ∼ U(2n2). The δ-weak condi-
tion number introduced by Lotz and Noferini [18, Definition 2.5] offers a more refined
picture by measuring the tightest upper bound t such that the directional sensitivity (8)
stays below t with probability at least 1 − δ.

Definition 1 Let λ0 ∈ C be a finite simple eigenvalue of a singular pencil A − λB.
The δ-weak condition number of λ0 is defined as

κw(λ0; δ) = inf
{

t ∈ R : P(σE,F (λ0) < t) ≥ 1 − δ
}

, (E, F) ∼ U(2n2).

If λ0 is a finite simple eigenvalue of a regular pencil A − λB, it follows from
(3) and (6) that σE,F (λ0) = |y∗(E − λ0F)x |/|y∗Bx | ≤ κ(λ0) = 1/γ (λ0) for all
‖(E, F)‖ = 1. Therefore, if we apply Definition 1 to a regular pencil, it follows from
(5) that κw(λ0; δ) converges to κ(λ0) = 1/γ (λ0) monotonically from below as δ ↓ 0.
The following result from [18, Theorem 5.1] and [17, Theorem 3.1] suggests to use
1/γ (λ0) as a proxy for eigenvalue sensitivity in the singular case as well.
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Theorem 4 Let λ0 ∈ C be a finite simple eigenvalue of an n×n singular pencil A−λB
of normal rank n − k. Then for δ ≤ k/(2n2) it holds that

1√
δ2n2

· 1

γ (λ0)
≤ κw(λ0; δ) ≤

√
k√

δ2n2
· 1

γ (λ0)
,

where γ (λ0) is defined as in (6) with the right/left eigenvectors x, y from Theorem 2.

The algorithms for the singular generalized eigenvalue problem presented in the next
section use γ (λ0) to identify (finite) eigenvalues numerically.

We finish this section by remarking that the absolute condition number (5) is con-
sistent with the definitions in [17, 18]. Following, e.g., [10] one could also consider a
notion of relative condition number that imposes ‖E‖F ≤ ‖A‖F and ‖F‖F ≤ ‖B‖F
instead of ‖(E, F)‖ ≤ 1 on the perturbation direction in (3). In effect, both the standard
andweak (absolute) condition numbers getmultiplied by the factor (‖A‖2F+‖B‖2F )1/2.
Under reasonable choices of the parameters involved, this additional factor does not
differ significantly for the modified pencils. In particular, our results presented for
absolute condition numbers easily extend to relative condition numbers.

3 Randomized numerical methods based on the normal rank

In this section, we describe in some detail the three numerical methods from [12,
13] for computing the finite eigenvalues of an n × n singular pencil A − λB with
nrank(A, B) = n− k for k ≥ 1. All three methods require knowledge about the exact
normal rank in order to leave the regular part intact. If this quantity is not known
a priori, it can be determined from rank(A − ξi B) for a small number of randomly
chosen ξi ∈ C.1

3.1 Rank-completingmodification

We first consider the rank-completing method from [12], where a random pencil of
normal rank k is added to yield a (generically regular) matrix pencil

˜A − λ˜B := A − λB + τ (UDAV
∗ − λUDBV

∗), (10)

where DA, DB ∈ C
k×k are diagonal matrices such that DA −λDB is regular,U , V ∈

C
n×k are matrices of rank k, and τ ∈ C is nonzero. Note that k is the smallest normal

rank for such a modification to turn a singular into a regular pencil. The following
result [12, Summary 4.7], see also [13, Remark 3.5], characterizes the dependence of
eigenvalues and eigenvectors of the modified pencil (10) on τ , DA, DB , U , and V ∗.

1 Although this heuristics works very well in practice, an analysis is beyond the scope of this work. Already
the seemingly simpler special case of numerically deciding whether A − λB is close to a singular pencil is
quite intricate [16].
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Summary 5 Let A − λB be an n × n singular pencil of normal rank n − k with
left minimal indices n1, . . . , nk and right minimal indices m1, . . . ,mk . Let N =
n1 + · · · + nk and M = m1 + · · · + mk . Then the regular part of A − λB has size
r := n − N − M − k and generically (with respect to the entries of DA, DB,U , V ∗),
the modified pencil ˜A−λ˜B defined in (10) is regular and its eigenvalues are classified
in the following four disjoint groups:

1. True eigenvalues: There are r eigenvalues counted with their multiplicities that
coincide with the eigenvalues of the original pencil A − λB with the same par-
tial multiplicities. The right/left eigenvectors x, y of ˜A − λ˜B belonging to these
eigenvalues satisfy the orthogonality relations V ∗x = 0 and U∗y = 0.

2. Prescribed eigenvalues: There are k eigenvalues such that V ∗x �= 0 for all right
eigenvectors x andU∗y �= 0 for all left eigenvectors y. These are the k eigenvalues
of DA − λDB .

3. Random right eigenvalues: There are M eigenvalues, which are all simple and such
that V ∗x = 0 for all right eigenvectors x and U∗y �= 0 for all left eigenvectors y.

4. Random left eigenvalues: There are N eigenvalues, which are all simple and such
that V ∗x �= 0 for all right eigenvectors x and U∗y = 0 for all left eigenvectors y.

Summary 5 has the following practical consequences. If we compute all eigenvalues
λi of (10), together with the (normalized) right and left eigenvectors xi and yi for
i = 1, . . . , n, then max(‖V ∗xi‖2, ‖U∗yi‖2) = 0 if and only if λi is an eigenvalue
of A − λB. In numerical computations, we can use max(‖V ∗xi‖2, ‖U∗yi‖2) < δ1,
where δ1 is a prescribed threshold, as a criterion to extract the true eigenvalues in
the first phase. Note that for a simple finite eigenvalue xi and yi are unique (up to
multiplication by unit complex numbers) because, generically, the modified pencil is
regular. They correspond to eigenvectors of the original singular pencil satisfying the
orthogonality constraints V ∗xi = 0 and U∗yi = 0.

In the second phase, we use the (reciprocal) eigenvalue sensitivities for extracting
simple finite eigenvalues, that is, we compute

γi = |y∗
i Bxi |(1 + |λi |2)−1/2 (11)

and identify λi as a finite eigenvalue if γi > δ2 for a prescribed threshold δ2. Note
that 1/γi is the absolute condition number of λi as an eigenvalue of the (generically)
regular pencil (10); see (6).

For different matrices U and V in (10) we obtain different eigenvectors xi and yi
and thus different values of γi for the same eigenvalue, while the changing of τ , DA

and DB does not affect the eigenvectors [13, Lemma 3.4]. In Sect. 4 we will analyze
these values for random U and V and compare them to the unique value γ (λi ) that
appears in the δ-weak condition number of λi as an eigenvalue of the singular pencil
A − λB; see Theorem 4.

The considerations above lead to Algorithm 1 from [12]. In theory, the results
returned by the algorithm are independent of τ �= 0. In practice, |τ | should be
neither too small nor too large in order to limit the impact of roundoff error;
in [12] it is suggested to scale A and B so that ‖A‖1 = ‖B‖1 = 1, where
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‖A‖1 = max1≤ j≤n
∑n

i=1 |ai j |, and take τ = 10−2. The quantity ε stands for the
machine precision.

Algorithm 1: Eigenvalues of singular pencil by rank-completing modification.

Input: A, B ∈ C
n×n such that ‖A‖1 = ‖B‖1 = 1, k = n − nrank(A, B), parameter

τ (default 10−2), thresholds δ1 (default ε1/2) and δ2 (default 102 ε).
Output: Simple finite eigenvalues of A − λB.
1: Select random n × k matrices U and V with orthonormal columns.
2: Select random diagonal k × k matrices DA and DB .
3: Compute the eigenvalues λi , i = 1, . . . , n, and right and left normalized

eigenvectors xi and yi of the perturbed pencil (10).
4: Compute γi = |y∗

i Bxi |(1 + |λi |2)−1/2 for i = 1, . . . , n.
5: Compute σi = ‖V ∗xi‖2, τi = ‖U∗yi‖2 for i = 1, . . . , n.
6: Return eigenvalues λi , i = 1, . . . , n, for which max(σi , τi ) < δ1 and

γi > δ2.

By the theory in [12, 13], the eigenvectors of the modified pencil (10) that cor-
respond to true eigenvalues do not change if we replace U and V by ˜U = UR and
˜V = V S, where R and S are arbitrary nonsingular k × k matrices. Thus, choos-
ing U , V to have orthonormal columns does not violate the genericity assumption in
Summary 5.

Note that γi in line 4 was initially computed in [12] as γi = |y∗
i
˜Bxi |. This was

changed to γi = |y∗
i
˜Bxi |(1 + |λi |2)−1/2 in [13] to be consistent with [17, 18]. Since

for true eigenvalues y∗
i
˜Bxi = y∗

i Bxi , we use B instead of ˜B to simplify the analysis.
We remark that the values γi from (11) were also used in [17] for computing finite

eigenvalues of a singular pencil via unstructured random perturbations. The use of
full-rank perturbations comes with two disadvantages: the orthogonality relations for
the eigenvectors exploited above are not satisfied and, in contrast to Algorithm 1, the
eigenvalues of the perturbed pencil in [17] differ from the exact eigenvalues of the
original pencil. The latter leads one to choose τ > 0 very small, but at the same time
it needs to stay well above the level of machine precision.

3.2 Normal rank projections

In [13], a variant of Algorithm 1was proposed that uses random projections to a pencil
of smaller size, equal to the normal rank n−k. In addition, the method does not require
to choose the matrices DA, DB , and the parameter τ .

ForU⊥, V⊥ ∈ C
n×(n−k), we consider the (n−k)× (n−k) pencilU∗⊥(A−λB) V⊥.

To connect it to the modified pencil (10) used in Algorithm 1, let us assume that
the columns of U⊥ and V⊥ span the orthogonal complements of ranges of U and V ,
respectively, so that U∗⊥U = 0, V ∗⊥V = 0. The pencil
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̂A − λ̂B := [U U⊥]∗ (A − λB + τ(UDAV
∗ − λUDBV

∗) [V V⊥]
=

[

U∗(A − λB)V + τ(DA − λDB) U∗(A − λB)V⊥
U∗⊥(A − λB)V U∗⊥(A − λB)V⊥

]

is then equivalent to (10) and we observe the following.

Proposition 1 ([13, Proposition 4.1 and Theorem 4.2]) Let A−λB be a complex n×n
singular pencil of normal rank n − k. Then, under the assumptions of Summary 5, the
(n − k) × (n − k) pencil A22 − λB22 := U∗⊥(A − λB) V⊥ is generically regular and
the eigenvalues of A22 − λB22 are precisely:

(a) the random eigenvalues of (10) (groups 3 and 4 in Summary 5);
(b) the true eigenvalues of A − λB.

Based on the above results, an algorithm is devised in [13]. Algorithm 2 is a sim-
plified form that matches Algorithm 1 as much as possible.

Algorithm 2: Eigenvalues of singular pencil by normal rank projection.

Input and output: See Algorithm 1.
1: Select random unitary n × n matrices [U U⊥] and [V V⊥], where U

and V have k columns.
2: Compute the eigenvalues λi , i = 1, . . . , n − k, and right and left

normalized eigenvectors xi and yi of U∗⊥(A − λB)V⊥.
3: Compute σi = ‖U∗(A − λi B)V⊥xi‖2, τi = ‖y∗

i U
∗⊥(A − λi B)V ‖2 for

i = 1, . . . , n − k.
4: Compute γi = |y∗

i U
∗⊥BV⊥xi | (1 + |λi |2)−1/2 for i = 1, . . . , n − k.

5: Return eigenvalues λi , i = 1, . . . , n − k, for which
max(σi , τi ) < δ1(1 + |λi |) and γi > δ2.

The following corollary shows that the reciprocal eigenvalue condition number
γi computed in line 4 of Algorithm 2 matches the corresponding quantity of
Algorithm 1.

Corollary 1 Let λi ∈ C be a simple eigenvalue of a singular pencil A − λB. Under
the assumptions of Proposition 1, if

(a) (λi , xi , yi ) is an eigentriple of (10) such that ‖xi‖2 = 1, ‖yi‖2 = 1, V ∗xi = 0,
and U∗yi = 0; and

(b) (λi , wi , zi ) is an eigentriple of A22 − λB22 such that ‖wi‖2 = 1, ‖zi‖2 = 1,
U∗(A − λi B)V⊥wi = 0, and z∗i U∗⊥(A − λi B)V = 0,

then |y∗
i Bxi | = |z∗i U∗⊥BV⊥wi |.

Proof Since λi is simple, the vectors xi , yi from (a) and wi , zi from (b) are uniquely
defined up to multiplication by unit complex numbers. If (a) and (b) both hold then it
immediately follows that, up to sign changes, xi = V⊥wi and yi = U⊥zi . ��
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3.3 Augmentation

The third method, also presented in [13], uses the (n + k) × (n + k) augmented (or
bordered) matrix pencil

Aa − λBa :=
[

A UTA
SAV ∗ 0

]

− λ

[

B UTB
SBV ∗ 0

]

, (12)

where SA, SB, TA, and TB are k × k diagonal matrices and U , V are n × k matrices.

Proposition 2 ([13, Proposition 5.1]) Let A−λB be an n×n singular pencil of normal
rank n−k such that all its eigenvalues are semisimple. Assume that the diagonal k×k
pencils SA−λSB and TA−λTB are regular and that their 2k eigenvalues are pairwise
distinct. Furthermore, let U , V ∈ C

n×k have orthonormal columns such that the
augmented pencil (12) is regular. Then the pencil (12) has the following eigenvalues:

(a) 2k prescribed eigenvalues, which are precisely the eigenvalues of SA − λSB and
TA − λTB;

(b) the random eigenvalues of (10) (groups 3 and 4 in Summary 5) with the same U
and V and with DA = TASA, DB = TBSB;

c) the true eigenvalues of A − λB.

The algorithm based on the above proposition is given in Algorithm 3.

Algorithm 3: Eigenvalues of singular pencil by augmentation.

Input and output: See Algorithm 1.
1: Select random n × k matrices U and V with orthonormal columns.
2: Select random diagonal k × k matrices TA, TB , SA, and SB
3: Compute the eigenvalues λi , i = 1, . . . , n + k, and normalized right and

left eigenvectors [xTi1 xTi2]T and [yTi1 yTi2]T of the augmented pencil (12).
4: Compute σi = ‖xi2‖2, τi = ‖yi2‖2, i = 1, . . . , n + k.
5: Compute γi = |y∗

i1Bxi1| (1 + |λi |2)−1/2, i = 1, . . . , n + k.
6: Return all eigenvalues λi , i = 1, . . . , n + k, where max(σi , τi ) < δ1 and

γi > δ2.

Again, the reciprocal eigenvalue condition number γi computed in line 5 of Algorithm
3 matches the corresponding quantity of Algorithm 1.

Corollary 2 Under the assumptions of Proposition 2, if

(a) (λi , xi , yi ) is an eigentriple of (10) such that ‖xi‖2 = 1, ‖yi‖2 = 1, V ∗xi = 0,
and U∗yi = 0; and

(b) (λi , wi , zi ), wherewi = [wT
i1 0]T and zi = [zTi1 0]T , such thatwi1 ∈ C

n, zi1 ∈ C
n,

‖wi‖2 = 1, ‖zi‖2 = 1, is an eigentriple of the augmented pencil (12),

then |y∗
i Bxi | = |z∗i Bawi | = |z∗i1Bwi1|.

Proof If a) and b) are both true then it immediately follows that, up to sign changes,
xi = wi1 and yi = zi1. ��
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Let us remark that Algorithms 1–3, with additional heuristic criteria, can in practice,
due to the “positive” effect of roundoff error, successfully compute multiple finite
eigenvalues as well; we refer to [13, Sec. 6] for details.

Remark 6 In exact arithmetic, a simple finite eigenvalue λ0 of a singular pencil A−λB
is an exact eigenvalue of a modified regular pencil ˜A − λ˜B that we obtain by rank-
completion, projection, or augmentation. In finite precision, ˜A − λ˜B is affected by
roundoff error. First, the construction of ˜A−λ˜B itself already introduces some error:

(˜A + �˜A) − λ(˜B + �˜B). (13)

Standard error analysis results [11] imply for all three methods that ‖�˜A‖2 � u‖A‖2
and ‖�˜B‖2 � u‖B‖2, where u denotes unit roundoff, provided that the parameters are
reasonably chosen. For example, in the augmentation (12), the norms of TA, SA should
be balanced with the norm of A and the norms of TB, SB should be balanced with
the norm of B. The application of the QZ algorithm for computing the eigenvalues of
the perturbed pencil (13) introduces further error but, thanks to its backward stability,
the additional error is of the same nature. In summary, the computed eigenvalues are
the exact eigenvalues of a slightly perturbed modified pencil. In turn, we expect the
computed approximation for an eigenvalue to be accurate if the (exact) eigenvalue of
˜A−λ˜B is not ill-conditioned. Our analysis will show that if λ0 is well-conditioned as
an eigenvalue of A − λB, then it is – with high probability – also a well-conditioned
eigenvalue of ˜A − λ˜B. In turn, one can expect good accuracy for well-conditioned
eigenvalues of A − λB.

Let us stress that it is nontrival to relate (13) back to an error in the original singular
pencil A − λB. At least, we are not aware of existing backward error analysis results
for singular matrix pencils that would allow us to do this.

4 Probabilistic analysis

Our goal is to analyze the behavior of the quantities γi in Algorithms 1–3 and show
that they are unlikely to be much below γ (λi ). It follows from Corollaries 1 and 2 that
it is sufficient to consider Algorithm 1 and the quantity γi defined in (11).

In the following, we assume that λi is a simple eigenvalue of A − λB and let
X = [X1 x] and Y = [Y1 y] denote the orthonormal bases for ker(A − λi B) and
ker((A−λi B)∗) introduced inTheorem2.We recall fromTheorem4 that the reciprocal
of γ (λi ) = |y∗Bx |(1 + |λi |2)−1/2 critically determines the sensitivity of λi as an
eigenvalue of A − λB. The sensitivity of λi as an eigenvalue of ˜A − λ˜B from (10)
is given by 1/γi with γi = |y∗

i Bxi |(1 + |λi |2)−1/2; see (11). The eigenvectors xi , yi
are normalized (‖xi‖2 = ‖yi‖2 = 1) and depend on the choices of U and V in
Algorithm 1. Generically (with respect to DA, DB,U , V ∗), Summary 5.1 yields the
relations

xi = [X1 x]
[

a
α

]

and yi = [Y1 y]
[

b
β

]

, V ∗xi = 0, U∗yi = 0. (14)
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If V ∗X1 is invertible, the choice of V entirely determines |α| because V ∗xi = 0
implies a = −(V ∗X1)

−1V ∗xα and, hence, ‖xi‖2 = 1 implies

|α| = 1/
√

1 + ‖(V ∗X1)−1V ∗x‖22.

Analogously, the choice of U determines |β| if U∗Y1 is invertible.
Since Y ∗BX1 = 0 and Y ∗

1 BX = 0, we get y∗
i Bxi = αβ y∗Bx and thus

γi = |α||β|γ (λi ).

The relation 0 ≤ |α|, |β| ≤ 1 immediately gives γi ≤ γ (λi ), in line with (9). A small
value of |α||β| means an increased eigenvalue sensitivity for ˜A − λ˜B, potentially
causing Algorithm 1 to yield unnecessarily inaccurate results. In the following, we
will show that this is unlikely when random matrices U , V are used in Algorithm 1.
This also implies that the (reciprocal) condition numbers computed in Algorithm 1
can be used with high probability to correctly identify finite simple eigenvalues.

4.1 Preliminary results

LetN 1(μ, σ 2) denote the normal distribution with meanμ and variance σ 2. In partic-
ular, x ∼ N 1(0, 1) is a standard (real) normal randomvariable.Wewrite z ∼ N 2(0, 1)
if z = x + iy is a standard complex normal variable, that is, x, y ∼ N 1(0, 1

2 ) are
independent. In the following, we will analyze real matrices (F = R) and complex
matrices (F = C) simultaneously. For this purpose, we set φ = 1 for F = R and
φ = 2 for F = C.

The matrices U and V from Algorithm 1 belong to the Stiefel manifold

V
n
k (F) = {Q ∈ F

n×k : Q∗Q = I }.

We will choose them randomly (and independently) from the uniform distribution on
V
n
k (F). A common way to compute such a matrix is to perform the QR decomposition

of an n × k Gaussian random matrix M , that is, the entries of M are i.i.d. real or
complex standard normal variables, see e.g., [21, 26]. That this indeed yields the
uniform distribution follows from the following variant of the well-known Bartlett
decomposition theorem ([24, Theorem 3.2.14], [6, Proposition 7.2]); see also [18,
Proposition 4.5].

Theorem 7 For F ∈ {R,C}, let M ∈ F
n×k , n ≥ k, be a Gaussian random matrix.

Consider the QR decomposition M = QR, where Q ∈ V
n
k (F) and R ∈ F

k×k is upper
triangular with non-negative diagonal entries. Then

(a) the entries of Q and the entries of the upper triangular part of R are all independent
random variables;

(b) Q is distributed uniformly over Vn
k (F);

(c) ri j ∼ N φ(0, 1) for 1 ≤ i < j ≤ k;
(d) φr2j j ∼ χ2(φ(n − j + 1)) for j = 1, . . . , k;
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where χ2(�) denotes the chi-squared distribution with � degrees of freedom.

Part (b) of Theorem 7 implies that each column of Q is distributed uniformly over
the unit sphere in F

n . Note that x = z/‖z‖2, for a Gaussian random vector z ∈ F
n ,

has the same distribution. The following result provides the distribution of the entries
of x ; this result can be found for F = R in [4].

Lemma 1 Consider a random vector x distributed uniformly over the unit sphere in
F
n for n ≥ 2. Then the entries of x are i.i.d. with

|xi |2 ∼ Beta

(

φ

2
,
φ(n − 1)

2

)

, i = 1, . . . , n,

where Beta denotes the beta distribution.

Proof By Theorem 7, the entries of x are independent. Without loss of generality,
let i = 1. Using that x = z/‖z‖2 for a Gaussian random vector z and setting

w = [

z2 . . . zn
]

, it follows that |x1|2 = |z1|2
|z1|2+‖w‖22

, where z1, w are independent

and φ|z1|2 ∼ χ2(φ), φ‖w‖22 ∼ χ2(φ(n − 1)). This implies the claimed result; see,
e.g., [6, p. 320]. ��

Our analysis will connect α and β from (14) to the nullspaces of k×(k+1) standard
Gaussian matrices, which are characterized by the following result.

Lemma 2 For a Gaussian random matrix Ω ∈ F
k×(k+1) with k ≥ 2, let x be a vector

in the nullspace of Ω such that ‖x‖2 = 1. Then, with probability one, |xi | is uniquely
determined and satisfies

|xi |2 ∼ Beta

(

φ

2
,
φk

2

)

. (15)

Proof We assume that Ω has rank k, which holds with probability 1. For a Gaus-
sian random vector ω ∈ F

k+1 independent of Ω∗, consider the QR decomposition
[Ω∗, ω] = QR. Letting x denote the last column of Q, it follows that x is orthogonal
to the columns of Ω∗ or, in other words, x is in the nullspace of Ω . From Theorem 7,
it follows that x is distributed uniformly over the unit sphere in F

k+1. The distribu-
tion (15) then follows from Lemma 1. Finally, note that |xi |2 is uniquely determined
because the nullspace of Ω has dimension 1. ��

4.2 Statistics of |˛|, |ˇ|

The results above readily yield the distribution of |α|2 and |β|2.
Proposition 3 ForF ∈ {R,C}, letU , V ben×k independent randommatrices from the
uniform distribution on the Stiefel manifoldVn

k (F). Consider a finite simple eigenvalue
λi ∈ F of a singular pencil A − λB with A, B ∈ F

n×n. Let xi and yi be the right and
left normalized eigenvectors of the perturbed regular pencil (10) for the eigenvalue λi
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and let α, β be defined as in (14). Then |α| and |β| are independent random variables
and

|α|2, |β|2 ∼ Beta

(

φ

2
,
φk

2

)

,

where φ = 1 for F = R and φ = 2 for F = C.

Proof We will only prove the distribution for α; the derivation for β is entirely anal-
ogous. By the unitary invariance of the uniform distribution over the Stiefel manifold
we may assume without loss of generality that X1 = [e1 . . . ek] and x = ek+1, where
ei is the i-th vector of the standard canonical basis. By Theorem 7, the matrix V is
obtained from the QR factorization Ω = V R of an n× k Gaussian random matrix Ω ,
with R being invertible almost surely. We partition

V ∗ = [

V1 v2 · · ·] = R−∗ [

Ω1 ω2 · · ·] = R−∗Ω∗,

such that V1,Ω1 are k × k matrices and v2, ω2 are vectors. Then

0 = V ∗xi = V ∗X1a + V ∗xα = [

V1 v2
]

[

a
α

]

= R−∗ [

Ω1 ω2
]

[

a
α

]

.

Since submatrices of Gaussian random matrices are again Gaussian random matrices,

this means that

[

a
α

]

is in the nullspace of a k × (k + 1) Gaussian random matrix and

has norm 1. Thus, the result on the distribution of α follows from Lemma 2.
The independence of |α| and |β| follows from the independence of U and V

combined with the fact that |α| does not depend on U and |β| does not depend
on V . ��
Remark 8 It is important to emphasize that the case F = R in Proposition 3 not only
requires A, B, DA, DB to be real but also the eigenvalue λi to be real.

Remark 9 An analysis similar to the one above was performed in [18, Proposition 6.5]
and [17, Section 4.1] for unstructured perturbations. This analysis also starts from the
relation (14) and then analyzes the distribution of |α| · |β|. One significant difference
in our case is that α and β are independent due to the structure of the perturbation
in (10), while this does not hold for the setting considered in [17, 18].

4.3 Statistics of |˛| · |ˇ|

As explained above, we aim at showing that the random variable |α||β| is unlikely to
become tiny. We start by computing the expected value of |α||β|. Since |α| and |β| are
independent random variables, we have E[|α||β|] = E[|α|]E[|β|]. The factors can be
computed using the following result from [18, Lemma A.1].
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Table 1 Expected values of
|α||β| for
k = n − nrank(A, B) =
1, 2, 4, . . . , 64

k E
[|αC||βC|] E

[|αR||βR|]

1 0.44444 0.40528

2 0.28444 0.25000

4 0.16512 0.14063

8 0.08972 0.07477

16 0.04688 0.03857

32 0.02398 0.01959

64 0.01213 0.00987

Lemma 3 Let X ∼ Beta(a, b), where a, b > 0. Then

E
[

X1/2] = B(a + 1/2, b)

B(a, b)
, where B(a, b) = Γ (a)Γ (b)

Γ (a + b)
.

To simplify the presentation, we will from now on denote the scalars α and β, in
the setting of Proposition 3, as αF and βF with F ∈ {R,C}. Combining Proposition 3
and Lemma 3 gives the following result.

Lemma 4 Under the assumptions of Proposition 3, the following holds:

(a) E[|αC|] = E[|βC|] =
√

πΓ (k + 1)

2Γ (k + 3/2)
and E [|αC||βC|] = πΓ (k + 1)2

4Γ (k + 3/2)2
.

(b) E[|αR|] = E[|βR|] = Γ ((k + 1)/2)√
πΓ ((k + 2)/2)

and E [|αR||βR|] = Γ ((k + 1)/2)2

πΓ ((k + 2)/2)2
.

Table 1 contains the computed expected values for different k, using the results of
Lemma 4.

Using the well-known bounds

√
x ≤ Γ (x + 1)

Γ (x + 1/2)
≤ √

x + 1/2 (16)

for x > 0, the expected values of |α||β| from Lemma 4 can be bounded as

π

4(k + 1)
≤ E[|αC||βC|] ≤ π

4(k + 1/2)
,

2

π(k + 1)
≤ E[|αR||βR|] ≤ 2

πk
. (17)

One therefore expects that γi underestimates the true values γ (λi ) by roughly a
factor 1/k.

For real matrices A and B, one would prefer to use real matrices in the pertur-
bation (10) as well, because eigenvalue computations are performed more efficiently
in real arithmetic. As we can see from Table 1 as well as from the bounds (17), the
expected value of |α||β| for real perturbations is only slightly smaller than the one for
complex perturbations. However, as we will see in the following, the left tail of |α||β|
is less favorable in the real case and it appears to be safer to use complex modifications
of the original pencil even for real data.
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4.4 Bounds on left tail of |˛| · |ˇ|

We will start with a simple tail bound that extends a result from [17, Proposition 4.3]
to the complex case.

Corollary 3 Under the assumptions of Proposition 3, we have

P(|αC||βC| < t) ≤ 2kt (18)

and

P(|αR||βR| < t) ≤ √

8kt/π (19)

for every 0 ≤ t ≤ 1.

Proof Using min{|α|4, |β|4} ≤ |α|2|β|2, we obtain

P

(

|α|2|β|2 < t2
)

≤ P

(

min
{

|α|4, |β|4
}

< t2
)

≤ P

(

|α|2 < t
)

+ P

(

|β|2 < t
)

= 2

B(φ/2, φk/2)

∫ t

0
xφ/2−1(1 − x)φk/2−1 dx,

where φ = 1 for F = R and φ = 2 for F = C. For φ = 2, we obtain from |1− x | ≤ 1
that

P

(

|αC|2|βC|2 < t2
)

≤ 2t

B(1, k)
= 2kt .

Similarly, for φ = 1 we get

P

(

|αR|2|βR|2 < t2
)

≤ 4
√
t

B(1/2, k/2)
≤

√

8kt

π
,

where we used the bound (16) to derive the last inequality. ��
Althoughwe know fromProposition 3 that |α| and |β| are independent randomvari-

ables, this is not used in Corollary 3. The following proposition, where we exploit the
fact that |α| and |β| are independent, significantly improves the results of Corollary 3.

Proposition 4 Under the assumptions of Proposition 3, it holds that

P (|αC||βC| < t) ≤ k2t2(1 − 2 ln t) (20)

and

P (|αR||βR| < t) ≤ 2k

π
t(− ln t) + O(t), t → 0. (21)
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Proof To derive the bound (20) we first observe that, since |αC| and |βC| are indepen-
dent by Proposition 3, it holds that

P(|αC||βC| ≤ t) = P

(

|αC|2|βC|2 ≤ t2
)

=
∫∫

D
g(x; k)g(y; k) dx dy

withD = {

(x, y) ∈ [0, 1] × [0, 1] : xy ≤ t2
}

and g(x; k) = 1
B(1,k) (1−x)k−1.Using

the bound g(x; k) ≤ 1
B(1,k) = k gives (20):

P(|αC||βC| ≤ t) ≤ k2
∫∫

D
dxdy = k2t2(1 − 2 ln t).

For real perturbations we have |αR|2, |βR|2 ∼ Beta(1/2, k/2) with the distribution
function satisfying

h(x; k) = 1

B(1/2, k/2)
x−1/2(1 − x)k/2−1 ≤ 1

B(1/2, k/2)
x−1/2.

This gives

P(|αR||βR| ≤ t) =
∫∫

D
h(x; k)h(y; k)dxdy

≤ 1

B(1/2, k/2)2

∫∫

D
x−1/2y−1/2dxdy

= 1

B(1/2, k/2)2
4t

(

2
√

π − 1 + t − ln t
)

≤ 2k

π
t
(

2
√

π − 1 + t − ln t
)

,

where we applied (16). ��
Proposition 4 indicates that, even for a real singular pencil, it would be better to

use complex perturbations as they give a much smaller probability of obtaining tiny
|α||β|. This is confirmed by the following lower bound for P(|αR||βR| < t).

Lemma 5 Under the assumptions of Proposition 3, it holds that

P (|αR||βR| < t) ≥
√

8(k − 1)

π
t + O(t2), t → 0. (22)

Proof It is easy to see that

P(|αR||βR| < t) ≥ P(|αR| < t) + P(|βR| < t) − P(|αR| < t)P(|βR| < t)

= 2P(|αR| < t) − P(|αR| < t)2.
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Fig. 1 Comparison of bounds and actual values of P(|α||β| < t) for t = 10−5, 10−4, 10−3, 10−2, and for
k = 4 (left) and k = 8 (right)

From the Taylor expansion of P(|αR| < t) around t = 0 we get

P(|αR||βR| < t) ≥ 4

B(1/2, k/2)
t + O(t2)

and the bound follows from applying (16). ��

From Lemma 5 and Proposition 4 we see that for sufficiently small t > 0 the
lower bound (22) for P (|αR||βR| < t) is much larger than the upper bound (20) for
P (|αC||βC| < t).

Figure 1 compares the obtained bounds to P (|αC||βC| < t) and P (|αR||βR| < t),
computed for k = 4 and k = 8 using the probability density functions from
Appendix A. The solid black line corresponds to P (|αC||βC| < t). The blue dot-
ted and dashed lines are the refined bound (20) from Proposition 4 and the simple
upper bound (18) from Corollary 3, respectively. The solid red line corresponds to
P (|αR||βR| < t). The corresponding bounds are magenta curves, which show the
lower bound (22) from Lemma 5, the refined upper bound (21) from Proposition 4,
and the simple upper bound (19) from Corollary 3, respectively, As expected, the
bounds from Proposition 4 are much sharper than the simple bounds from Corol-
lary 3. Also, it is clearly seen from Fig. 1 that the probability of obtaining a tiny value
for |α||β| is much larger when using real perturbations.
Summary Together with the discussion in the beginning of this section, Proposition 4
allows us to compare the (reciprocal) eigenvalue sensitivity γ (λi ) of the original
pencil with the corresponding quantity γi for any of the three modified pencils used
in Algorithms 1–3. For complex perturbations, we obtain that

γi ≤ γ (λi ) ≤ γi/t

holds with probability at least 1 − k2t2(1 − 2 ln t) for any t > 0.
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Fig. 2 Example 1: Histogram of γ1/γ (λ1) and pdf using complex (left) and real (right) modifications

5 Numerical examples

All numerical examples were obtained with Matlab 2021b [19]. We used the imple-
mentations of Algorithms 1–3 available as routine singgep in MultiParEig [25].

Example 1 We consider the 8 × 8 singular matrix pencil

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −1 −1 −1 −1 −1 −1 0
1 0 0 0 0 0 0 0
1 2 1 1 1 1 1 0
1 2 3 3 3 3 3 0
1 2 3 2 2 2 2 0
1 2 3 4 3 3 3 −1
1 2 3 4 5 5 4 1
0 0 0 0 2 2 1 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−2 −2 −2 −2 −2 −2 −2 0
2 −1 −1 −1 −1 −1 −1 0
2 5 5 5 5 5 5 0
2 5 5 4 4 4 4 0
2 5 5 6 5 5 5 −1
2 5 5 6 7 7 7 1
2 5 5 6 7 6 6 1
0 0 0 0 0 −1 −1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(23)

which is constructed so that the KCF contains blocks of all four possible types. It
holds that nrank(A, B) = 6, and the KCF has blocks J1(1/2), J1(1/3), N1, L0, L1,
LT
0 , and LT

2 .
Algorithm 1 was applied 105 times using random real and complex modifications;

we compared the computed values of γ1 to the exact value of γ (λ1) for the eigenvalue
λ1 = 1/3. The histograms of γ1/γ (λ1) for real and complex modifications together
with the corresponding probability density function (pdf) from Appendix A are pre-
sented in Fig. 2. The histograms appear to be consistent with the pdfs. The computed
average values of |α||β| are 0.28437 for complex and 0.24934 for real modifications,
which are both close to the theoretically predicted values for k = 2 in Table 1. We
note that we get almost identical results for the other eigenvalue λ2 = 1/2.

Example 2 For the second examplewe consider the pencilΔ1−λΔ0 from [12, Ex. 7.1]
with matrices

Δ0 = B1 ⊗ C2 − C1 ⊗ B2, Δ1 = C1 ⊗ A2 − A1 ⊗ C2
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Fig. 3 Example 2: Histogram of γ1/γ (λ1) and pdf using complex (left) and real (right) projections

of size 25× 25 related to the two-parameter eigenvalue problem (for details see, e.g.,
[12, Sec. 7]) of the form

A1 + λB1 + μC1 =

⎡

⎢

⎢

⎣

0 0 4 + 7λ 1 0
0 5 + 8λ 2 −λ 1

6 + 9λ + 10μ 3 1 0 −λ

1 −μ 0 0 0
0 1 −μ 0 0

⎤

⎥

⎥

⎦

,

A2 + λB2 + μC2 =

⎡

⎢

⎢

⎣

0 0 7 + 4λ 1 0
0 6 + 3λ 9 −λ 1

5 + 2λ + μ 8 10 0 −λ

1 −μ 0 0 0
0 1 −μ 0 0

⎤

⎥

⎥

⎦

,

where

det(A1 + λB1 + μC1) = 1 + 2λ + 3μ + 4λ2 + 5λμ + 6μ2 + 7λ3 + 8λ2μ + 9λμ2 + 10μ3,

det(A2 + λB2 + μC2) = 10 + 9λ + 8μ + 7λ2 + 6λμ + 5μ2 + 4λ3 + 3λ2μ + 2λμ2 + μ3.

The normal rank ofΔ1−λΔ0 is 21 and theKCF contains 4 L0, 4 LT
0 , 2 N4, 1 N2, 2 N1,

and 9 J1 blocks. Its finite eigenvalues areλ-components of the 9 solutions of the system
of two bivariate polynomials det(A1+λB1+μC1) = 0 and det(A2+λB2+μC2) = 0.
The pencil Δ1 − λΔ0 has one real eigenvalue λ1 = −2.41828 and eight complex
eigenvalues λ2, . . . , λ9.

Algorithm 2 was applied 105 times using random real and complex projections.
We compared the computed values of γ1 to the exact value of γ (λ1) for the real
eigenvalue λ1. In both cases the method successfully computed all finite eigenvalues.
The histograms of γ1/γ (λ1) together with the corresponding pdf from Appendix A
are presented in Fig. 3. Similar to the previous example, both histograms appear to
be consistent with the pdfs. The computed average values of |α||β| are 0.16413 for
complex and 0.14124 for real projections; both are again very close to the values in
Table 1 for k = 4.

Let us note that we get essentially identical results if we exchange the methods and
use Algorithms 2 or 3 in Example 1 and Algorithms 1 or 3 in Example 2, as expected
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by Corollary 1. However, if we apply Algorithm 1 or 3 with real modifications or
Algorithm 2 with real projections to the real pencil Δ1 − λΔ0, and consider any of
the 8 complex eigenvalues λ2, . . . , λ9, we get results that cannot be explained by
Proposition 3 and behave like the results in the next example.

Example 3 In this example we study the effect of real projections on a complex eigen-
value of a real pencil, which is a situation that is not covered by Proposition 3. By
considering two equivalent singular pencils we will show that the distribution function
for |αR||βR|, when we apply real projections to complex eigenvalues of real pencils,
depends onmore than just the difference k between the size of the pencil and its normal
rank, which is the key value in Proposition 3.

We take block diagonal matrices

A0 =
[

e1eT5
A20

]

, B0 =
[

e1eT4
B20

]

, (24)

where e1, e4, e5 are standard basis vectors in R5, and

A20 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0
0 2 0 0 0
0 0 1 1 0
0 0 −1 1 0
0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

, B20 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

.

The 10×10 pencil A0−λB0 has nrank(A0, B0) = 6 and the KCF has blocks J1(1+i),
J1(1−i), J1(2), N1, 3 L0, L1, 3 LT

0 , and L
T
1 .Wemultiply A0 and B0 into Ai = Qi A0Zi

and Bi = Qi B0Zi by real matrices Qi and Zi whose entries are independent random
variables uniformly distributed on (0, 1) for i = 1, 2 to get two equivalent singular
pencils of the same size, normal rank and eigenvalues.

Algorithm 2 was applied 105 times using random real projections to each of the
pencils A1 − λB1 and A2 − λB2 and the computed value of γ1 was compared to
the exact value of γ (λ1) for the complex eigenvalue λ1 = 1 + i. The histograms of
γ1/γ (λ1) togetherwith the theoretical distribution functions fromSect.Aare presented
in Figure 4. We see that, although the pencils A1 − λB1 and A2 − λB2 are equivalent,
the histograms are different. The histograms also look different than in the case when
we use real projections for a real eigenvalue for k = 4 (Fig. 2 right) or complex
projections (Fig. 2 left). While the shape of the left histogram in Fig. 4 resembles the
shape expected for complex perturbations, is the shape of the right histogram more in
line with the distribution function for real perturbations. The computed average values
of |αR||βR| are also different, we get 0.12195 for A1−λB1 and 0.13623 for A2−λB2,
both values are completely different from the values in Table 1 for k = 4.

Since we get histograms of different shape for two real equivalent pencils, this
shows that the distribution function for |αR||βR|, when we apply real perturbations to
complex eigenvalues of real pencils, depends on more than just the structure of the
KCF.

We remark that the histograms (not shown) for the real eigenvalue λ3 = 2 for both
pencils look identical to the right picture in Fig. 3 from Example 2, where k = 4 as
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Fig. 4 Example 3: Histogram of γ1/γ (λ1) and theoretical distribution functions (real and complex) for
k = 4 using real perturbations for a complex eigenvalue of a real pencil for A1 − λB1 (left) and A2 − λB2
(right)

well, which agrees with Remark 3 that even if some eigenvalues of the real pencil are
complex, this does not affect the behavior of real perturbations to real eigenvalues.
The computed average values of |αR||βR| for the real eigenvalue λ3 are 0.14077 for
A1 − λB1 and 0.14110 for A2 − λB2, they both agree with the value in Table 1 for
k = 4.

The last numerical example reflects that the case of real perturbations for a complex
eigenvalue of a real singular pencil is not covered by Proposition 3. Indeed, this case
was not taken properly into account in [18] and it remains an open problem to derive
an expression or a tight simple bound for the δ-weak condition number of a complex
eigenvalue under real perturbations.

6 Conclusions

We have analyzed three random based numerical methods for computing finite eigen-
values of a singular matrix pencil. All algorithms are based on random matrices that
transform the original singular pencil into a regular one in such way that the eigenval-
ues remain intact. Our analysis confirms the numerical validity of these methods with
high probability.

We also obtained sharp left tail bounds on the distribution of a product of two
independent random variables distributed with the generalized beta distribution of the
first kind or Kumaraswamy distribution.

A A closer look at the distribution of |˛||ˇ|
In this section, we derive explicit expressions for the probability density function
(pdf) of |α||β|. For this purpose, we first write down the pdfs of |α|, |β|, which we
can express with the generalized beta distribution of the first kind [20] in the real case
and the Kumaraswamy distribution [14] in the complex case.
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Lemma 6 Under the assumptions of Proposition 3, we have

(a) |αC|, |βC| ∼ GB1(2, 1, 1, k) = Kumaraswamy(2, k) with the pdf

h(x; k) = 2kx(1 − x2)k−1,

(b) |αR|, |βR| ∼ GB1(2, 1, 1
2 ,

k
2 ) with the pdf

g(x; k) = 2

B( 12 ,
k
2 )

(1 − x2)k/2−1,

where GB1(a, b, p, q) is the generalized beta distribution of the first kind and
Kumaraswamy(p, q) denotes the Kumaraswamy distribution with parameters p and
q.

Proof The pdf of X ∼ Beta(p, q) is given by

f (x; p, q) = 1

B(p, q)
x p−1(1 − x)q−1.

It follows that the pdf for Y = X1/2 is

2y f (y2; p, q) = 2

B(p, q)
y2p−1(1 − y2)q−1.

Now, we apply Proposition 3 and insert the corresponding values of p, q. The proof is
concluded by identifying the obtained densities with the Kumaraswamy distribution
in the complex case and the generalized beta distribution of the first kind in the real
case; see, e.g., [14, 20]. ��

The refs [14, 20] used in the proof above also provide expressions for the moments
of the twodistributions inLemma6,which can be used to verify the results ofLemma4.

In order to derive the pdf of |α| · |β| from the result of Lemma 6, we have performed
symbolic computations in Wolfram Mathematica [31]. Let fC(x; k) and fR(x; k)
denote the pdfs for |αC||βC| and |αR||βR|, respectively. Using that |αC|, |βC| are
independent and |αC|, |βC| ∼ Kumaraswamy(2, k), we obtain that

fC(x; k) = 2k2x(x2 − 1)2k−1B(k, k + 1)
( k(x2 − 1)

2k + 2
2F1(k + 1, k + 1, 2k + 2, 1 − x2)

− 22F1(k, k, 2k + 1, 1 − x2)
)

,

where 2F1(a, b, c, z) is the hypergeometric function. One finds that fC takes the form

fC(x; k) = x
(

pk−1(x
2) + qk−1(x

2) ln x
)

, (25)
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Fig. 5 Pdfs fC(x; k) (left) and fR(x; k) (right) for k = 2, 4, 6, 8

where pk−1 and qk−1 are polynomials of degree k − 1. Some explicit expressions for
small k are

fC(x; 1) = −4x ln x,

fC(x; 2) = 16x
( − 1 + x2 − (1 + x2) ln x

)

,

fC(x; 3) = 18x
( − 3 + 3x4 − 2(1 + 4x2 + x4) ln x

)

,

fC(x; 4) = 32

3
x
( − 11 − 27x2 + 27x4 + 11x6 − 6(1 + 9x2 + 9x4 + x6) ln x

)

.

We were unable to obtain a closed form for the distribution of |αR||βR|, with
|αR|, |βR| independent and |αR|, |βR| ∼ GB1(2, 1, 1

2 ,
k
2 ). For k = 2m we conjecture

that

fR(x; 2m) = pm−1(x
2) + qm−1(x

2) ln x,

where pm−1 and qm−1 are polynomials of degreem−1. In addition to the fact that this
looks similar to (25), this conjecture is also supported by the following expressions
for small m:

fR(x; 2) = − ln x,

fR(x; 4) = 9

4

( − 1 + x2 − (1 + x2) ln x
)

,

fR(x; 6) = 225

128

( − 3 + 3x4 − 2(1 + 4x2 + x4) ln x
)

.

The graphs of fC(x; k) and fR(x; k) for k = 2, 4, 6, 8 are presented in Fig. 5. Note
that limx→0 fC(x; k) = 0 and limx→0 fR(x; k) = ∞.
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