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ABSTRACT
We consider Noether’s problem on the noncommutative rational functions
invariant under a linear action of a finite group. For abelian groups the invariant
skew-fields are always rational, for solvable group they are rational if the
action is well-behaved – given by a so-called complete representation. We
determine the groups that admit such representations and call them totally
pseudo-unramified. We show that for a solvable group the invariant skew-field
is finitely generated. Finally we study totally pseudo-unramified groups and
classify totally pseudo-unramified p-groups of rank at most 5.
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1. Introduction

Invariants of group actions are an important topic that appears in many mathematical areas and beyond
mathematics in physics and chemistry. Classical invariant theory [33, 36] considers polynomials that
are preserved under the action of a group G given by a homomorphism G → AutF(F[x1, . . . , xn]). A
closely related topic are rational invariants, where one considers rational functions that are invariant
under the action of a group G given by a homomorphism G → AutF(F(x1, . . . , xn)). Noether’s problem
asks whether the subfield of invariants F(x1, . . . , xn)G is rational, i.e., purely transcendental over F. The
problem depends both on the group G and the base field F and topic is widely studied [12, 35, 37].
Noether’s problem has a positive answer in one variable over any field (Lüroth’s theorem), in two variables
overF = C and for linear actions of abelian groups overC [17]. There are groups with a negative answer;
over Q this happens even for cyclic groups (one such is Z47 [28]) and there are examples over C as well
[35].

We consider a noncommutative version of Noether’s problem. We replace commutative rational
functions with the free skew-field F (<x1, . . . , xn )> also called the skew-field of noncommutative rational
functions (in n variables). The free skew-field is the universal skew-field of fractions of the free associative
algebra of noncommutative polynomials (see [2, 10]). The noncommutative Noether’s problem then
considers the rationality of the skew-field of invariants of a finite group G, i.e., whether the skew field
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of invariants F (<x1, . . . , xn )>G is isomorphic to the skew-field of noncommutative rational functions
F (<y1, . . . , ym )> for some m ∈ N.

The polynomial noncommutative invariants are well studied [1, 11, 15, 39], with the main result being
that the polynomial noncommutative invariants are always isomorphic to a free algebra that is usually
not finitely generated. In [26] the authors consider noncommutative rational functions invariant under a
faithful action of finite abelian group given by linear transformations of variables. In this case the skew-
field of invariants C (<x1, . . . , xn )>A is rational in |A|(n − 1) + 1 variables [26, 4.1]. For example,

C (<x, y )>S2 = C (<x + y, (x − y)2, (x − y)(x + y)(x − y) )> ∼= C (<y1, y2, y3 )>.

In fact a closer inspection of the above example shows that we can replace C by Q or any other field of
characteristic not equal to 2.

One would like to use the cited theorem recursively on solvable groups; given an abelian normal
subgroup N of G first compute the N-invariants and proceed with the action of the quotient group G/N;
however, the subsequent action might not be linear. In some cases the idea still works, for example for the
action given by a complete representation as defined in [26] (or see Definition 2.1 below). If the action of
a finite group G is given via a complete representation on the linear span of variables x1, . . . , xn, then the
skew-field of invariantsC (<x1, . . . , xn )>G is rational in |G|(n−1)+1 variables [26, 5.1]. In fact, the proof
of the cited theorem serves as an algorithm for expressing free generators of the skew-field of invariants
in terms of the initial variables. Furthermore, [26] provides a class of groups called totally unramified
such that their regular representation is complete, thus the noncommutative Noether’s problem has a
(partial) positive answer for them. Among totally unramified groups are the symmetric groups S3 and S4.
Understanding their skew-fields of invariant noncommutative rational functions could shed some light
on the theory of noncommutative symmetric rational functions which is, contrary to the commutative
case, still far from complete [19].

The recursive method using normal abelian subgroups does not fail completely for a general finite
solvable group G; using it we can show that C (<x1, . . . , xn )>G is finitely generated as a skew-field over C
[26, 1.1]. In contrast, the ring of noncommutative polynomials invariant under a linear action of a finite
group F<x1, . . . , xn>G is almost never finitely generated [11, 6.8.4].

In this paper we study the noncommutative Noether’s problem over R and prove the real versions
of the main results of [26]. Then we study the reach of the cited results and our real counterparts. We
introduce totally pseudo-unramified groups, a generalization of totally unramified groups, and show they
are precisely the groups that admit complete representations, hence we harvest the full potential of [26,
5.1]. We also connect totally unramified groups and totally pseudo-unramified groups with established
concepts from group theory and representation theory. Finally, we classify totally unramified and totally
pseudo-unramified p-groups of rank at most 5. These groups are significant as there are p-groups of
rank 5 whose fields of commutative rational invariants are not rational [9, 21, 31]. Unsurprisingly none
of these groups are totally pseudo-unramified.

1.1. Main results and outline

Section 2 explains the notations and contains the main definitions followed by preliminaries on noncom-
mutative rational functions, Malcev-Neumann series, Clifford theory and projective representations as
needed for this paper.

In Section 3 we study real noncommutative rational functions invariant under a linear action of finite
abelian and solvable. We obtain the following main results:

1. If the action of a group G on F (<x1, . . . , xn )> is nontrivial on F and trivial on the variables, then
F (<x1, . . . , xn )>G = FG (<x1, . . . , xn )> (Proposition 3.1).

2. The skew-field of noncommutative real rational functions invariant under a linear action of an
abelian group is rational (Theorem 3.5).
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3. The skew-field of noncommutative real rational functions invariant under an action of a group given
via a complete representation is rational (Theorem 3.7).

4. The skew-field of noncommutative real rational functions invariant under an action of a finite
solvable group is finitely generated. (Theorem 3.10).

In Section 4 we turn our attention to complete representations and totally pseudo-unramified groups
and give the following results:

5. Totally pseudo-unramified groups are precisely the groups that admit complete representations
(Theorem 4.4).

6. An example of a group that is not totally pseudo-unramified, yet it has a rational skew-field of
noncommutative rational invariants (Example 4.7).

7. A semidirect product A�G of an abelian group A and a totally pseudo-unramified group G is totally
pseudo-unramified (Corollary 4.10).

In Section 5 we study totally unramified groups with main results as follows:

8. Totally unramified groups are closed under quotients (Proposition 5.4).
9. Metacyclic groups and semidirect products of abelian groups are totally unramified (Corollaries 5.11

and 5.12).
10. If G and H are isoclinic finite groups and G is totally unramified, then H is totally unramified

(Proposition 5.15).

Finally, in Section 6 we study nilpotent totally unramified groups and establish:

11. A nilpotent totally unramified group is metabelian (Theorem 6.4).
12. In Section 6.1 we classify totally unramified and totally pseudo-unramified p-groups of rank up to 5.

Throughout the paper examples are given to demonstrate the strength of our results.

2. Definitions and preliminaries

2.1. Notation

Throughout the paper we aim to use standard notation. All considered fields have characteristic zero.
All considered groups are assumed to be finite unless stated otherwise. We denote the set of complex
irreducible characters of a group G by Irr(G) and the set of complex linear characters (characters of
degree 1) by Lin(G). The trivial character of G is denoted by τG or simply τ . Complex class functions of
G are endowed with a scalar product,

〈ϕ, ψ〉 = 1
|G|

∑
g∈G

ϕ(g)ψ(g).

The irreducible characters are an orthonormal basis of class functions with respect to this scalar product.
We denote the set of irreducible complex linear representations of a group G by IRR(G).

A complex character χ of a group G is multiplicity free if 〈χ , μ〉 ≤ 1 for every irreducible character μ ∈
Irr(G). A complex representation ρ of a group G is multiplicity free if its character χρ is multiplicity free.
Equivalently, ρ is multiplicity free if it is equivalent to a direct sum of pairwise nonequivalent irreducible
representations.

For a subgroup N of G and an irreducible character μ ∈ Irr(N) we denote the irreducible characters
of G lying over μ by

Irrμ(G) = {χ ∈ Irr(G) | 〈χ |N , μ〉 > 0} = {χ ∈ Irr(G) | 〈χ , IndG
N μ〉 > 0}.

By IRRμ(G) we denote the set of irreducible linear representations ρ of G such that their characters
satisfy χρ ∈ Irrμ(G).
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Let N be a normal subgroup of G, then G acts on the characters of N. The left action on a character
μ of N is defined by gμ(n) = μ(g−1ng). If μ is irreducible, then so is gμ.

2.2. Definitions

We proceed with our main definitions. The definitions of complete representations and totally unram-
ified groups were introduced in [26]. The original definition of complete representation is missing the
base cases of recursion; we correct this oversight here. Also the definition of Qπ is slightly changed – in
[26] the summand πB ⊗ πB appears twice. Using Proposition 4.2 it is easy to see that the definitions are
equivalent.

Definition 2.1. A complex linear representation π of a finite group G is complete if it decomposes as
π = πB ⊕ πJ and there is a nontrivial abelian normal subgroup N ⊆ G such that:

1. πB|N contains exactly the nontrivial irreducible linear representations of N as direct summands with
multiplicity 1;

2. G = N or the representation

Qπ = [
π ⊕ (πB ⊗ πB) ⊕ (πB ⊗ πJ) ⊕ (πJ ⊗ πB) ⊕ (πB ⊗ π ⊗ πB)

]
Nτ

is a complete representation of G/N. Here, for a representation ρ, ρNτ denotes the summands of ρ

which are trivial on N and thus naturally gives rise to a representation of G/N.

A real linear representation of a finite group is complete if its complexification is complete.

Remark 2.2. Let ρ : G → GL(V) be a complex linear representation and N ⊆ G an abelian normal
subgroup such that ρ|N = ⊕m

i=1 μi is multiplicity free. Then V decomposes as a direct sum
⊕m

i=1 Vμi
of one-dimensional subspaces such that v ∈ V is in Vμi if and only if ρ(n)v = μi(n)v for every n ∈ N.
Pick vi ∈ Vμi then

ρ(g−1ng)vi = μi(g−1ng)vi = gμi(n)vi.

Rearranging yields

ρ(n)
(
ρ(g)vi

) = gμi(n)
(
ρ(g)vi

)
,

which shows that ρ(g)vi ∈ Vgμi . Hence the matrix of ρ(g) written in any basis {bj | j = 1, . . . , m} such
that bj ∈ Vμj has precisely one nonzero entry in each row and each column.

Definition 2.3. A finite group G is unramified over a nontrivial normal abelian subgroup N if for every
complex irreducible linear representation ρ of G, the restriction ρ|N is multiplicity free or trivial.

The group G is totally unramified if it is abelian or there exists a nontrivial abelian normal subgroup
N such that G is unramified over N and G/N is totally unramified.

In the definition of a totally unramified group we can exchange representations for their characters.
Using Frobenius reciprocity we observe that a group G is unramified over N if and only if for every
nontrivial irreducible representation (character) μ of N the induced representation (character) IndG

N(μ)

is multiplicity free.

Remark 2.4. We can interpret the recursive condition in the definition of a totally unramified group as
follows: a finite group G is totally unramified if there exists a series of normal subgroups

1 = N0 � N1 � · · · � Nn−1 � Nn = G

such that for every j = 0, . . . , n−1 the quotient Nj+1/Nj is abelian and G/Nj is unramified over Nj+1/Nj.
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The notion of “unramified over” is closely related to the so-called Gelfand triples (see [8]). A triple
(G, H, ρ) consisting of a group G, subgroup H and an irreducible linear representation ρ of H is a Gelfand
triple if the induced representation IndG

H ρ is multiplicity free. Thus a finite group G is unramified over
an abelian normal subgroup N if and only if (G, N, μ) is a Gelfand triple for every nontrivial irreducible
linear representation μ of N.

The next definition is a generalization of totally unramified groups and is, as we will see, tightly
connected to complete representations.

Definition 2.5. A finite group G is pseudo-unramified over a nontrivial abelian normal subgroup N if
for every irreducible character μ ∈ Lin(N) there exists χ ∈ Irrμ(G) such that χ |N is multiplicity free.

A finite group G is totally pseudo-unramified if it is abelian or there exists a nontrivial abelian normal
subgroup N such that G is pseudo-unramified over N and G/N is totally pseudo-unramified.

Again we can interchange representations with characters and a suitably modified version of
Remark 2.4 holds for totally pseudo-unramified groups.

Clearly every totally pseudo-unramified group is solvable. If G is unramified over N, then clearly G
is pseudo-unramified over N. Hence every totally unramified group is totally pseudo-unramified.

Remark 2.6. The definitions of totally unramified and totally pseudo-unramified groups allow for a
straightforward checking of the properties using GAP [18]. We use it to work with examples; in the squeal
the group with group ID [n, m] refers to the group that is in GAP summoned by “SmallGroup(n, m).”

2.3. Noncommutative rational functions

The field of (commutative) rational functions is the field of fractions of (commutative) polynomials. The
passage from noncommutative polynomials i.e., free associative algebra, to the skew-field of noncommu-
tative rational function (also called free skew-field) is not as straightforward. We introduce terminology
and basic concepts surrounding noncommutative rational functions. For a longer exposition we refer to
[2, 10, 11, 24, 38].

A noncommutative rational expression is a syntactically valid combination of elements of the base field
F, variables, operations +, ·, inverse and parenthesis, for example:

(
2x3

1x4
2x5

1 − ((x1x2 − x2x1)
−1 + 1)2)−1 + x3.

Such expressions can be evaluated on tuples of square matrices of equal size with coefficients in F. An
expression is nondegenerate if it is valid to evaluate it on some tuple of matrices. Two nondegenerate
expressions are equivalent if they evaluate equally whenever both are defined. A noncommutative rational
function is an equivalence class of a nondegenerate rational expression; these functions form the free
skew-field F (<x1, . . . , xn )>. The free skew field F (<x1, . . . , xn )> is the universal skew-field of fractions of
the free algebra F<x1, . . . , xn>. It is universal in the sense that any epimorphism from F<x1, . . . , xn>
to a skew-field D extends to a specialization from F (<x1, . . . , xn )> to D.

Another way of constructing the free skew-field is as the universal localization of free algebra, i.e., we
adjoin entries of inverses of all full matrices over the free algebra. Any noncommutative rational function
r ∈ F (<x1, . . . , xn )> can be represented by a linear realization

r = c∗L−1b

where b, c ∈ Fn and

L = A0 +
d∑

i=1
Aixi

for some matrices Ai ∈ Mn(F).
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We say that a skew-field is rational (or free) over F if it is isomorphic to the free skew-field
F (<x1, . . . , xn )> for some n ∈ N. Variables x1, . . . , xn in F (<x1, . . . , xn )> generate a free group � under
multiplication. The skew-field F (<x1, . . . , xn )> is also the universal field of fractions of the group algebra
F�, hence we also use notation F (<x1, . . . , xn )> = F (<� )>.

2.4. Malcev-Neumann series and Connes operator

Let � be the free group generated by X = {x1, . . . , xn}. A formal (power) series on � with coefficients in
F is a function S : � → F. We denote the set of formal series by F� . Any formal series S can be uniquely
presented by

∑
ω∈� S(ω)ω. The support of a series S is supp S = {ω | S(ω) �= 0}.

Let ≤ be any total order of � compatible with the group structure. For an example of such an ordering
we refer to [3, 34]. The Malcev-Neumann series F((�, ≤)) (with respect to the given order) is the set of
series S ∈ F� such that their support is well ordered. Malcev-Neumann series form a skew-field under
the pointwise addition and Cauchy product:

ab =
∑
ω∈�

∑
α,β∈�
αβ=ω

aαbβω.

For the sake of brevity we fix the ordering of � and denote F((�)) = F((�, ≤)). For more on Malcev-
Neumann series we refer to [34].

The rational closure of the free algebraF<x1, . . . , xn> or the group algebraF� inF((�)) is isomorphic
to F (<� )> regardless of the ordering [29, 34]. We say that a series r ∈ F((�)) is rational (over F) if
it belongs to the rational closure of F<x1, . . . , xn>, i.e., the smallest subring of F((�)) that contains
F<x1, . . . , xn> and is closed under taking inverse.

Let M be the free monoid generated by X. Any rational function r ∈ F (<x1, . . . , xn )> that is defined
at 0 can be expanded to a series r ∈ FM . Conversely, a series r ∈ FM represents a rational function if
and only if its Hankel matrix has finite rank [5, 38]. Rationality in Malcev-Neumann series is a bit more
intricate. Let G = Cay(�, X) be the Cayley graph of �. Given a series a ∈ F((�)) we have the Connes
operator [F, a] : FG → FG . For the definition of the Connes operator we refer to [13, 16, 27]. A Malcev-
Neumann series a is rational if and only if [F, a] has finite rank ([16, 12], [27, 2.6]). Given a subfield
K ⊂ F and a series a ∈ K((�)) the Connes operator [F, a] : KG → KG is equal to the restriction of the
Connes operator over F.

2.5. Complex noncommutative rational invariants

We summarize the results and techniques from [26]. We say that a finite group G acts linearly
on F (<x1, . . . , xn )> if the action is defined by a linear representation G → GL(V) where V =
span

F
{x1, . . . , xn}. We say that a linear action is diagonal if each variable xi spans an invariant subspace of

V i.e., g ·xi = χi(g)xi where χi is a linear character of G. If G acts faithfully diagonally on F (<x1, . . . , xn )>

then G is abelian and F is a splitting field of G. Every linear representation of an abelian group A over
a splitting field F is equivalent to a direct sum of representation of degree one, thus we can pass from a
linear action of A on F (<x1, . . . , xn )> to a diagonal action via a linear transformation of variables.

Given a faithful diagonal action of a finite abelian group A on F (<� )> we have a surjective group
homomorphism � → A∗(= Hom(A,F∗) ∼= A) defined by xi �→ χi. We denote the kernel of this
homomorphism by �A. By the Nielsen–Schreier formula, �A is a free group of rank |A|(n − 1) + 1.

Theorem 2.7. [26, 4.1] If a finite abelian group A acts faithfully diagonally on F (<� )> then F (<� )>A =
F (<�A )>.

The original statement of the theorem requires F to be algebraically closed but allows linear actions,
yet algebraically closed field is only needed to pass from a linear action to a diagonal one.
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We continue with invariants of complete representations. If the linear action of a group G on
C (<x1, . . . , xn )> is given via a complete representation π = πB⊕πJ and N is an abelian normal subgroup
from the definition, we can find a “good” set of free generators of N-invariants.

Let span
C
{x1, . . . , xn} = VB ⊕ VJ be the decomposition with respect to π = πB ⊕ πJ and let

{bχ | χ ∈ Irr(N)\{τ }} and {vk | k = 1, . . . , deg πJ}
be bases of VB and VJ , respectfully, such that for each n ∈ N we have π(n)bχ = χ(n)bχ and π(n)vk =
μk(n)vk for some μk ∈ Irr(N). We also set bτ = 1. Then the free generators of N-invariants are

bχ bμb(χμ)−1 , bθ vkb(θμk)−1

where χ and μ run through Irr(N)\{τ }, θ runs through Irr(N) and k = 1, . . . , deg πJ ([26, 4.2]). Using
Remark 2.2 we show that G/N acts linearly on these generators via the representation Qπ . The item (2)
of the definition then allows us to continue recursively and conclude that the skew-field of invariants
C (<x1, . . . , xn )>G is rational ([26, 5.1]).

2.6. Clifford theory

We give a short overview of Clifford theory. For a more thorough and general exposition we refer to
[4, 14, 22].

Let G be a finite group and N an (abelian) normal subgroup. For μ ∈ Irr(N) the inertia subgroup is
IG(μ) = {g ∈ G | gμ = μ}. In this subsection we use H = IG(μ). Pick any left transversal {gα | α ∈
G/H} of H in G. Clifford theorem ([14, (11.1)], [22, (6.5)], [4, 7.3]) states that for any χ ∈ Irrμ(G) we
have (independently of the transversal)

χ |N = eχ

∑
α∈G/H

gαμ

where eχ ∈ N is called the ramification of χ over N. For any χ ∈ Irrμ(G) we have a unique θ ∈ Irrμ(H)

such that

χ |H =
∑

α∈G/H

gα θ

and θ |N = eχμ ([22, (6.11)], [4, 7.6]). By Frobenius reciprocity we get the dual statement:

IndG
N(μ) = IndG

H(IndH
N (μ)) =

∑
θ∈Irrμ(H)

eθ IndG
H(θ),

induction θ �→ IndG
H(θ) gives a bijection from Irrμ(H) to Irrμ(G) and the ramification over N eθ =

eIndG
H(θ) is preserved. For our purposes we summarize the findings in the following proposition.

Proposition 2.8. (1) A group G is unramified over a nontrivial abelian normal subgroup N if and only if
for every nontrivial μ ∈ Irr(N) the inclusion Irrμ(IG(μ)) ⊆ Lin(IG(μ)) holds.

(2) A group G is pseudo-unramified over a nontrivial abelian normal subgroup N if and only if for every
μ ∈ Irr(N) the intersection Irrμ(IG(μ)) ∩ Lin(IG(μ)) is non-empty.

Proof. (1) A group G is unramified over N if and only if for every nontrivial μ ∈ Irr(N) and every
χ ∈ Irrμ(G) the ramification eχ over N is equal to 1. The ramification eχ is the same as the ramification
eθ of the unique θ ∈ Irrμ(IG(μ)) with the property IndG

IG(μ)(θ) = χ . We get θ |N = θ(1)μ = eχμ,
hence eχ = θ(1) = 1 if and only if θ ∈ Lin(IG(μ)).

(2) A group G is pseudo-unramified over N if and only if for every μ ∈ Irr(N) there exists χ ∈ Irrμ(G)

with ramification eχ over N equal to 1. From here we reason as in the proof of (1).
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2.7. Projective representations

To give a more palpable description of Irrμ(IG(μ)) we turn to projective representations. For a detailed
discussion we refer to [4, Ch.6].

Let V be a finite dimensional (complex) vector space. A (complex) projective representation of a group
G is a mapping P : G → GL(V) satisfying

∀x, y ∈ G : P(x)P(y) = π(x, y)P(xy)
for some π : G × G → C∗. We call π a factor set of P and P a π-representation. The degree of
representation P is the dimension of V . A π-representation is irreducible if it does not have any nontrivial
invariant subspaces. We denote the set of irreducible π-representations of G by IRRπ (G).

Any factor set π satisfies the 2-cocycle condition:

∀x, y, z ∈ G : π(x, y)π(xy, z) = π(x, yz)π(y, z).

Conversely any mapping π : G×G → C∗ satisfying the 2-cocycle condition (2-cocycle) is a factor set of
some projective representation. The factor sets equipped with pointwise multiplication form the abelian
2-cocycle group Z2(G,C∗) (with trivial action on C∗). The factor sets π , π ′ are associated if there exists
a function λ : G → C∗ such that

∀x, y ∈ G : π ′(x, y) = λ(x)λ(y)
λ(xy)

π(x, y).

The factor sets that are associated to the trivial factor set form the subgroup B2(G,C∗) of 2-coboundaries.
The second cohomology group

M(G) = H2(G,C∗) = Z2(G,C∗)/B2(G,C∗)
is also called the Schur multiplier of G. We denote the equivalence class of a factor set π ∈ Z2(G,C∗)
by [π ] ∈ M(G). We get another equivalent definition of the Schur multiplier using Hopf ’s formula
M(G) = H2(G,Z) ∼= (R ∩ [F, F])/[R, F], where F is a free group and R a normal subgroup such that
G ∼= F/R. For a thorough exposition on the Schur multiplier we refer to [25].

The next proposition follows directly from M(G) ∼= (R ∩ [F, F])/[R, F].

Proposition 2.9. The Schur multiplier of a finite cyclic group is trivial.

Projective representations P : G → GL(V) and P′ : G → GL(V ′) are linearly equivalent if there exists
a linear isomorphism S : V → V ′ such that P′(g) = SP(g)S−1 for every g ∈ G. Projective representations
P and P′ are projectively equivalent if there exists a function λ : G → C∗ such that λP and P′ are linearly
equivalent. We note that projectively equivalent representations have associated factor sets. Conversely
there is a bijection between IRRπ (G) and IRRπ ′

(G) if π and π ′ are associated. Namely, if π ′(g, h) =
λ(g)λ(h)

λ(gh)
π(g, h), then the bijection is given by P �→ λP.

Some properties of IRRπ (G) are determined by the class [π ] ∈ M(G). One such property is described
in the next lemma.

Lemma 2.10. A group G has a π-representation of degree one if and only if [π ] = 1 ∈ M(G).

Proof. If P is a π-representation of degree one, we get π(g, h) = P(g)P(h)/P(gh). If π(g, h) =
λ(g)λ(h)/λ(gh), then λ is a π-representation of degree one.

We now describe a connection between IRRμ(IG(μ)) for an irreducible character μ ∈ Irr(N) of
an abelian normal subgroup N of G and some projective representations of IG(μ)/N. In the sequel we
denote H = IG(μ).

Let ρ : H → GL(V) be a linear representation of H of degree n with character χρ ∈ Irrμ(H) for some
μ ∈ Irr(N). Further we choose a left transversal {hα | α ∈ H/N} of N in H. The transversal defines a
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2-cocycle f ∈ Z2(H/N, N) by hαhβ = f (α, β)hαβ . We define a mapping P : H/N → GL(V) by

P(α) = ρ(hα).

Then P is an irreducible projective representation of H/N of degree n with the factor set π(α, β) =
μ(f (α, β)). We say that P is a descent of ρ to H/N. A different choice of transversal defines an associated
factor set and a projectively equivalent representation.

We can reverse the process. Let P : H/N → GL(V) be an irreducible projective representation of
H/N with a factor set π(α, β) = μ(f (α, β)). We define a mapping ρ : H → GL(V) by

ρ(nhα) = μ(n)P(α).

Then ρ is an irreducible linear representation of H of degree n and its character lies in Irrμ(H). We say
that ρ is a lift of P to H.

We summarize the above discussion in a lemma.

Lemma 2.11. Let N be an abelian normal subgroup of G and μ ∈ Irr(N) an irreducible character.
Further let f ∈ Z2(IG(μ)/N, N) be any 2-cocycle defining the extension from IG(μ)/N to IG(μ). Then
there is a degree preserving bijection between IRRμ(IG(μ)) and IRRπ (IG(μ)/N), where π = μ ◦ f ∈
Z2(IG(μ)/N,C∗).

2.8. Inflation-restriction exact sequence

Motivated by Lemma 2.11 we investigate the mapping μ �→ [μ ◦ f ]. This mapping appears in a case of
the inflation-restriction exact sequence. The discussed sequence is thoroughly examined in [4, Ch.6.§5].

Let N be an (abelian) normal subgroup of H. We denote by

LinH(N) = {μ ∈ Lin(N) | hμ = μ for any h ∈ H} = {μ ∈ Lin(N) | IH(μ) = H}
the linear characters of N invariant under the action of H. There is an exact sequence

1 Lin(H/N) Lin(H) LinH(N) M(H/N)
Inf Res TH (2.1)

where TH is given by TH(μ) = [μ ◦ f ] with f ∈ Z2(H/N, N) being any 2-cocycle that describes the
extension of H/N to H. We also note that Lin(H) ∼= H/H′ and LinH(N) ∼= N/[N, H].

3. Real noncommutative rational invariants

In this section we show that the noncommutative real rational functions invariant under the linear
action of an abelian group are rational over R. Then we extend the result to actions given by complete
representations. At the end we show that the skew-field of rational invariants of a finite solvable group
is finitely generated.

We derive a technique that will allow us to pass from the invariants over C to invariants over R using
the action of the Galois group Gal(C/R) ∼= Z2. For this we consider group actions on noncommutative
rational functions that are nontrivial on the base field and trivial on the variables. We use Malcev-
Neumann series to study functions invariant under such actions.

Proposition 3.1. 1. Let the action of a (possibly infinite) group G on F((�)) be given by an action on F

and trivial action on �, then F((�))G = FG((�)).
2. Let K ⊂ F be fields, then K((�)) ∩ F (<� )> = K (<� )>.
3. Let the action of a (possibly infinite) group G on F (<� )> be given by an action on F and a trivial action

on �, then F (<� )>G = FG (<� )>.
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Proof. (1) If a series
∑

ω∈� aωω ∈ F((�)) is invariant we get

g ·
∑
ω∈�

aωω =
∑
ω∈�

(g · aω)ω =
∑
ω∈�

aωω

for every g ∈ G, hence the coefficients are invariant.
(2) Take a series a ∈ K((�)) ∩ F (<� )>. The rank of Connes operator [F, a] over F is finite, hence the

rank of Connes operator over K is finite as well, thus a is rational over K.
(3) We embed F (<� )> into the skew-field of Malcev-Neumann series F((�)). The action of G on

F (<x1, . . . , xn )> extends to an action on F((�)) given by

g ·
∑
ω∈�

aωω =
∑
ω∈�

(g · aω)ω.

Now we apply (1) and (2).

Given a rational expression or a realization of a noncommutative complex rational function it is not
immediately obvious that the function can be written as a sum of real and imaginary part.

Corollary 3.2. Any r ∈ C (<x1, . . . , xn )> can be written as rR + irI with rR, rI ∈ R (<x1, . . . , xn )>.

Proof. Let Z2 act on C by the complex conjugation and trivially on the variables. We denote the action
of the nontrivial element of Z2 on the function r by r. We define rR = 1

2 (r + r) and rI = −i 1
2 (r − r). By

Proposition 3.1, both functions are in R (<x1, . . . , xn )>.

We can always translate certain actions of Z2 on C (<x1, . . . , xn )> to actions that fit the premise of
Proposition 3.1.

Lemma 3.3. Let the action of Z2 on F (<� )> be defined by a group automorphism of � and a field
automorphism of F. There exist free generators of F (<� )> such that Z2 acts diagonally on them. If the
action on F is nontrivial, then there exist free generators of F (<� )> such that Z2 acts trivially on them.

Proof. Let θ : � → � be a group automorphism of order two. By [30], there exist free generators
{w1, . . . , wn} of � such that θwj = w−1

j or θwj = AjwjBj where Aj, Bj only depend on wk for k < j and
θAj = A−1

j , θBj = B−1
j . We replace the generators wj for which θwj = w−1

j with yj = (wj −1)(wj +1)−1

and get θyj = −yj and we replace generators wj for which θwj = AjwjBj by yj = (1 + Aj)wj(1 + Bj) to
get θyj = yj.

If the automorphism θ is nontrivial on F then there exists c ∈ F such that θc = −c. We replace the
free generators yj such that θyj = −yj by y′

j = cyj and get θy′
j = θcθyj = y′

j.

Corollary 3.4. Let the action of Z2 on F (<� )> be given via automorphisms of � and F. If the action is
trivial on F, then F (<� )>Z2 is rational over F. If the action is nontrivial of F, then F (<� )>Z2 is rational over
FZ2 .

Proof. First we apply Lemma 3.3. If the action on F is nontrivial we finish with Lemma 3.3, otherwise
with Theorem 2.7.

The method to determine real noncommutative invariants consists of expanding the action to rational
functions over C, computing complex invariants using [26, 4.1] and then pushing the results back to
noncommutative rational functions over R using the above results.

Theorem 3.5. Let a finite abelian group A act faithfully linearly on R (<x1, . . . , xn )>, then
R (<x1, . . . , xn )>A ∼= R (<w1, . . . , w|A|(n−1)+1 )>.
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Proof. We extend the action of A to C (<x1, . . . , xn )> and let Z2 act on C by the complex conjugation
and trivially on the variables. The actions commute, hence we get an action of the group A × Z2 and
invariants R (<x1, . . . , xn )>A = C (<x1, . . . , xn )>A×Z2 .

We note that every representation of an abelian group over R is equivalent to a direct sum of
irreducible representations of dimension at most 2. One dimensional representations are of the form
g · x = ±x. Two dimensional irreducible representations are equivalent to a representation of the form

g ·
[

x
y

]
=

[
cos φ − sin φ

sin φ cos φ

] [
x
y

]

and they are diagonalized over C in the variables x + iy and x − iy, which are permuted by the action
of Z2. Therefore we can choose a set of free generators X of C (<x1, . . . , xn )> such that A acts diagonally
on them and X is closed under the action of Z2. Let � be the group generated by X. Then � is closed
under the action of Z2, hence �A is also closed under the action of Z2. By Corollary 3.4 the skew-field
of invariants R (<x1, . . . , xn )>A = C (<�A )>Z2 is rational over R in |A|(n − 1) + 1 variables.

Example 3.6. Let Z3 act on R (<x, y, z )> via a cyclic permutation of variables (x �→ y �→ z �→ x). Take
ω = − 1

2 + i
√

3
2 . The action is diagonalized over C in variables

a = x + y + z, b = x + ωy + ωz, c = x + ωy + ωz

and the free generators of C (<x, y, z )>Z3 are

a, bc, bac, cb, cab, b3, c3.

We use a linear transformation to get the free generators of R (<x, y, z )>Z3 :

w1 = a, w2 = bc + cb, w3 = i(bc − cb), w4 = bac + cab, (3.1)
w5 = i(bac − cab), w6 = b3 + c3, w7 = i(b3 − c3)

To express the generators in the initial variables x, y, z we first introduce some notation:

f1(A, B, C) = AB + BC + CA, f2(A1, A2, A3) =
∑
σ∈S3

Aσ(1)Aσ(2)Aσ(3),

f3(A, B, C) = A(A + B + C)B + B(A + B + C)C + C(A + B + C)A.

The free generators wj are then expressed as follow:

w1 = x + y + z,
w2 = 2

(
x2 + y2 + z2) − f1(x, y, z) − f1(x, z, y),

w3 = √
3(f1(x, y, z) − f1(x, z, y)),

w4 = 3
(
x(x + y + z)x + y(x + y + z)y + z(x + y + z)z

) − (x + y + z)3

w5 = √
3
(
f3(x, y, z) − f3(x, z, y)

)
w6 = 2

(
x3 + y3 + z3 + f2(x, y, z)

) −
1
2

(
f2(x, x, y) + f2(x, x, z) + f2(x, y, y) + f2(x, z, z) + f2(y, y, z) + f2(y, z, z)

)
,

w7 =
√

3
2

(
f2(x, x, z) + f2(x, y, y) + f2(y, z, z) − f2(x, x, y) − f2(x, z, z) − f2(y, y, z)

)
.

Next we consider the invariants of an action given via a complete representation.

Theorem 3.7. Let a finite group G act on R (<x1, . . . , xn )> via a complete representation, then

R (<x1, . . . , xn )>G ∼= R (<w1, . . . , w|G|(n−1)+1 )>.
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Proof. Denote the complete representation by π . We extend the action of G toC (<x1, . . . , xn )> and letZ2
act onC by the complex conjugation and trivially on the variables. Let N be the normal abelian subgroup
of G and span

C
{x1, . . . , xn} = VB ⊕ VJ the decomposition with respect to π according to the definition

of complete representation. We get the basis of V

{bχ | χ ∈ Irr(N)\{τ }} ∪ {vk | k = 1, . . . , deg πJ}.

that diagonalize π |N . We denote bτ = 1. Since every real irreducible character of an abelian group
decomposes over C as a sum of conjugate linear characters we can choose a basis such that bχ = bχ̄ =
bχ−1 and vk = vk′ for some k′. By [26, 4.2],{

bχ bμb(χμ)−1 , bθ vkb(θμk)−1 | χ , μ ∈ Irr(N)\{τ }, θ ∈ Irr(N), k = 1, . . . , deg πJ
}

are the free generators of C (<x1, . . . , xn )>N such that G/N acts linearly on them. We use a linear
transformation to get free generators

bχ bμbχμ + bχ̄ bμ̄bχμ, i(bχ bμb(χμ)−1 − bχ̄ bμ̄bχμ)

and

bθ vkbθμk
+ bθ̄ vkbθμk , i(bθ vkbθμk

− bθ̄ vkbθμk),

where χ and μ run through Irr(N)\{τ }, θ runs through Irr(N) and k = 1, . . . , deg πJ . We note that
some expressions appear twice and some are equal to 0; these we omit. Then Z2 acts trivially on these
free generators, hence they are also free generators of R (<x1, . . . , xn )>N by Proposition 3.1. The quotient
G/N acts linearly on them via a representation that is equivalent to Qπ , thus we can continue with
recursion.

Example 3.8. Let the symmetric group S3 act on R (<x, y, z )> by permuting the variables. The invariants
of the cyclic normal subgroup 〈(123)〉 ∼= Z3 are computed in Example 3.6. The action of the quotient
Z2 ∼= S3/〈(123)〉 is given by the action of the cycle (12), that is defined by

a �→ a, b �→ ωc, c �→ ωb,

hence the action on the free generators given by (3.1) is

w1 �→ w1, w2 �→ w2, w3 �→ −w3, w4 �→ w4, w5 �→ −w5, w6 �→ w6, w7 �→ −w7

and the free generators of R (<x, y, z )>S3 are

w1, w2, w4, w6, w3w3, w3w5, w3w7, w5w3, w7w3, w3w1w3, w3w2w3, w3w4w3, w3w6w3.

With a bit of further effort we can show that these are also the free generators of Q (<x, y, z )>S3 .

The computing method fails for a general linear action of a solvable group, however we can still use
it to show that the skew-field of noncommutative real rational invariants of a solvable group is finitely
generated (as a skew-field over R), whereas the ring of noncommutative polynomials invariant under a
linear action of a finite group is almost never finitely generated [11, 6.8.4].

We begin with abelian groups.

Lemma 3.9. Let D be a finitely generated skew-field over R and let a finite abelian group A act on D via a
homomorphism A → AutR(D). Then DA is a finitely generated skew-field over R.

Proof. Let d1, . . . , dm be the generators of D. We define an action of A on the free skew-field E = R (<xig |
i = 1, . . . , m, g ∈ A )> by gxih = xi(gh). Then the specialization ψ : E → D defined by ψ(xig) = gdi
satisfies ψ(gy) = gψ(y) and its domain is closed under the action of A. By Theorem 3.5, EA is rational
in finitely many variables. Further, the action of A on E is given by a direct sum of copies of the regular
representation of A, hence it contains every representation of A. Thus we proceed as in the proof of
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Theorem 3.7 to find free generators of EA that are polynomial in the initial variables, hence they are in
the domain of ψ .

We restrict the specialization ψ to EA. Any d ∈ DA is the image of some r ∈ F, but then it is also the
image of 1/|A|∑g∈A gr ∈ EA which shows that ψ |EA is surjective. Hence, DA is generated by the images
of the generators of EA.

We apply the lemma inductively to deduce the result for solvable groups.

Theorem 3.10. Let D be a finitely generated skew-field over R and let a finite solvable group G act on D
via a homomorphism G → AutR(D). Then DG is a finitely generated skew-field over R. In particular this
holds for D = R (<x1, . . . , xn )>G.

Proof. Let N be a nontrivial abelian subgroup of G. By Lemma 3.9, the skew-field DN is finitely generated.
We continue with the action of G/N on DN and conclude the proof by induction.

4. Complete representations and totally pseudo-unramified groups

In this section we study complete representations and totally pseudo-unramified groups. Our first
nonabelian examples of totally pseudo-unramified (and totally unramified) groups are dihedral groups.

Example 4.1. The dihedral group D2n = 〈a, b | an = b2 = abab = e〉 (n ≥ 3) has
irreducible representations of degree one and two. The representatives of two-dimensional irreducible
representations are given by

πω : a �→
[
ω 0
0 ω−1

]
, b �→

[
0 1
1 0

]
,

where ω is a n-th root of unity such that ω �= ω−1. The restriction of πω to the normal subgroup 〈a〉 is
equivalent to πω|〈a〉 ∼= μω ⊕μω−1 , where μx(a) = x. Clearly the restriction is multiplicity free, therefore
D2n is unramified over 〈a〉. The quotient D2n/〈a〉 is abelian, hence, D2n is totally unramified and also
totally pseudo-unramified. If n = 3, the representation πω is complete, otherwise it is not.

The above example shows that the standard representation of D6 ∼= S3 is complete. We will show that
the same holds for the standard representation of S4. First we prove an easy proposition.

Proposition 4.2. (1) Let π be a subrepresentation of ρ and assume π is complete, then ρ is complete.
(2) Let ρ be a subrepresentation of π and suppose π ⊕ ρ is complete, then π is complete.

Proof. (1) Write π = πB ⊕πJ as guaranteed in the definition of a complete representation, further write
ρ = π ⊕ π0. Then we can decompose ρ = ρB ⊕ ρJ where ρB = πB and ρJ = πJ ⊕ π0. Clearly this
decomposition satisfies item (1) from the definition. The item (2) is clearly true if we are at the last step
of the recursion. Otherwise Qπ is a subrepresentation of Qρ and we finish by recursion.

(2) We can assume that ρ is irreducible. Write π⊕ρ = πB⊕π ′
J . Item (1) of the definition of a complete

representation shows that ρ appears in πB with multiplicity at most 1, hence we can write π ′
J = πJ ⊕ ρ

and π = πB ⊕ πJ . Then we compute

Q(π ⊕ ρ) = Qπ ⊕ [ρ ⊕ (πB ⊗ ρ) ⊕ (ρ ⊗ πB) ⊕ (πB ⊗ ρ ⊗ πB)]Nτ ,

since every summand of

[ρ ⊕ (πB ⊗ ρ) ⊕ (ρ ⊗ πB) ⊕ (πB ⊗ ρ ⊗ πB)]Nτ

is contained in Qπ as a subrepresentation we can finish with recursion.



COMMUNICATIONS IN ALGEBRA® 2281

Example 4.3. The symmetric group S4 contains an abelian normal subgroup
V = {e, (12)(34), (13)(24), (14)(23)},

which is isomorphic to the Klein four-group Z2 × Z2. The character tables of S4 and V are:
S4 {} {2} {2, 2} {3} {4}
τS4 1 1 1 1 1
χ1 1 −1 1 1 −1
χ2 3 1 −1 0 −1
χ3 3 −1 −1 0 1
χ4 2 0 2 −1 0

V
τV 1 1 1 1
μ1 1 −1 1 −1
μ2 1 1 −1 −1
μ3 1 −1 −1 1

The character of the standard representation ρ of S4 is χ2. Its restriction to V is χ2|V = μ1 + μ2 + μ3,
thus ρ satisfies item (1) of the definition of a complete representation. It remains to show that Qρ is
complete. For this we compute χ2 ⊗ χ2 = τ + χ2 + χ3 + χ4. Since χ4 is induced by the character of the
standard representation of S3 ∼= S4/V , the representation Qρ contains the standard representation of S3
as a subrepresentation and is therefore complete.

Tracing through the character table it is not hard to see that S4 is unramified over V , thus S4 is totally
unramified. We cannot extend these examples to S5 as it is not solvable.

As promised in we connect complete representations and totally pseudo-unramified groups in the
next theorem.

Theorem 4.4. (1) The regular representation of a totally pseudo-unramified group is complete.
(2) If a group admits a complete representation, then it is totally pseudo-unramified.
(3) A group is totally pseudo-unramified if and only if it admits a complete representation.

Proof. (1) Let G be totally pseudo-unramified and let RG be the regular representation. Let G be pseudo-
unramified over an abelian normal subgroup N. Partition Irr(N) into equivalence classes of the form
[μ] = {gμ | g ∈ G}. For each such class of nontrivial characters pick χ[μ] ∈ Irr(G) such that
〈χ[μ]|N , θ〉 = 1 for any (and hence all) θ ∈ [μ] as guaranteed in the definition of “pseudo-unramified
over”. Write χB for the sum of these characters and let πB be a subrepresentation of RG with character
χB. Then write RG = πB ⊕ πJ . By construction, πB|N contains all nontrivial representations of N with
multiplicity one. Notice that πJ contains a regular representation of G/N as a subrepresentation and
therefore the representation Qπ contains a regular representation of G/N. By Proposition 4.2 we can
proceed with recursion.

(2) Let π be a complete representation of G and let N be the abelian normal subgroup from the
definition of complete representation. Then the characters of the irreducible summands of πB are the
characters required to show that G is pseudo-unramified over N. We conclude the proof with recursion.

(3) Follows directly from (1) and (2).

The smallest group that is not totally pseudo-unramified is SL2(F3) of order 24. The smallest examples
of groups that are totally pseudo-unramified but not totally unramified are four groups of order 48 with
GAP group IDs [48, 15], [48, 16], [48, 17], and [48, 18]. There exist p-groups (for every prime p) that are
not totally pseudo-unramified. We provide examples in Section 6.1.

The next example shows that (normal) subgroups and quotients of a totally pseudo-unramified group
are not necessarily totally pseudo-unramified.

Example 4.5. The group G with the structure description C2×((C8�C4)�C2) and group ID [128, 254] is
totally pseudo-unramified and the group H with the structure description (C8�C4)�C2) and group ID
[64, 10] is not totally pseudo-unramified. However, we have G ∼= C2 × H, hence the quotient G/C2 ∼= H
and the subgroup 1 × H of G are not totally pseudo-unramified.
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Totally pseudo-unramified groups behave well under the direct product.

Proposition 4.6. (1) Let G and H be finite groups and suppose G is pseudo-unramified over N, then G×H
is pseudo-unramified over N × 1.

(2) If G and H are totally pseudo-unramified groups, then G × H is totally pseudo-unramified.

Proof. (1) Any irreducible representation of N×1 is of the form μ⊗τ1 where μ ∈ Irr(N). If χ ∈ Irrμ(G)

has multiplicity free restriction χ |N , then χ ⊗ τH ∈ Irrμ⊗τ1(G × H) has multiplicity free restriction
(χ ⊗ τH)|N×1 = χ |N ⊗ τ1.

(2) The base case is A × H where A is abelian. By (1), A × H is pseudo-unramified over A × 1
and (A × H)/(A × 1) ∼= H is totally pseudo-unramified. We reduce the general case to the base case
recursively using (1).

We return to Example 4.5 and consider it from the point of view of the noncommutative rational
invariants.

Example 4.7. We have G ∼= C2 × H where G is the group with GAP group ID [128, 254] that is totally
pseudo-unramified and H is the group with GAP group ID [64, 10] that is not totally pseudo-unramified.
Let G act on the free skew-field C (<x1, . . . , xn )> via a complete representation. Then the skew-field of
rational invariants C (<x1, . . . , xn )>G ∼= C (<y1, . . . , y|G|(n−1)+1 )> is rational by [26, 5.1]. However, we
can take an intermediate step and first compute the skew-field of C2-invariants C (<x1, . . . , xn )>C2 ∼=
C (<z1, . . . , z2n−1 )> that is rational, hence the skew-field C (<z1, . . . , z2n−1 )>H ∼= C (<x1, . . . , xn )>G is
also rational. Thus we have an example of a skew-field of rational invariants of a finite group that is
rational yet the group is not totally pseudo-unramified. Furthermore, G is pseudo-unramified over C2,
by Proposition 4.6, thus tracing trough the proofs of Theorem 4.4 and [26, 5.1] we can show that the
considered action of H is linear.

We proceed with a cohomological characterization of the notion of “pseudo-unramified over”.

Theorem 4.8. Let N be a nontrivial abelian normal subgroup of G. Then G is pseudo-unramified over N
if and only if for all irreducible characters μ ∈ Irr(N) and for any cocycle f ∈ Z2(IG(μ)/N, N) defining
the extension from IG(μ)/N to IG(μ), the class [μ ◦ f ] ∈ M(IG(μ)/N) is trivial.

Proof. By (2) of Proposition 2.8, the group G is pseudo-unramified over N if and only if IRRμ(IG(μ))

contains a representation of degree 1. By Lemma 2.11, instead of the degrees of IRRμ(IG(μ)) we
can consider the degrees of irreducible projective representations IRRπ (IG(N)/N), where π is any
representative of [μ ◦ f ]. By Lemma 2.10, IRRπ (IG(N)/N) contains a representation of degree 1 if and
only if [μ ◦ f ] is trivial.

We can reformulate Theorem 4.8 using TH from the exact sequence (2.1).

Corollary 4.9. A group G is pseudo-unramified over a nontrivial abelian normal subgroup N if and only
for every subgroup H of G containing N the map TH : LinH(N) → M(H/N) is trivial.

Proof. Suppose that G is unramified over N. If the subgroup H is of the form IG(μ) for some μ ∈ Irr(N),
we can directly use Theorem 4.8. Now take an arbitrary subgroup H of G containing N any μ ∈ LinH(N),
then a direct computation shows H ⊆ IG(μ). It remains to show that TH(μ) is trivial, which is true since
TH(μ) is equal to the restriction of TIG(μ)(μ) to H/N.

The backwards implication follows from applying the assumptions to the inertia subgroups.

We give two more corollaries to Theorem 4.8.
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Corollary 4.10. A semidirect product A�G of a totally pseudo-unramified group G with an abelian group
A is totally pseudo-unramified.

Proof. The inertia subgroups of the characters of A are of the form A � H, for some subgroup H of G.
The 2-cocycle defining the extension from H to A�H is trivial, hence A�G is pseudo-unramified over
A by Theorem 4.8. The quotient (A � G)/A ∼= G is totally pseudo-unramified, hence A � G is totally
pseudo-unramified as well.

Example 4.5 shows that a semidirect product of an abelian group with a totally pseudo-unramified
group need not be totally pseudo-unramified.

Corollary 4.11. If the commutator subgroup G′ is abelian and G′ �= [G, G, G], then G is not pseudo-
unramified over G′.

Proof. We consider the exact sequence (2.1). The invariant characters LinG(G′) ∼= G′/[G′, G]
are nontrivial and the restriction Res : Lin(G) → LinG(G′) in (2.1) is trivial, therefore the map
TG : LinG(G′) → M(G/G′) is nontrivial. We now apply Corollary 4.9.

5. Totally unramified groups

In this section we focus on totally unramified groups. As mentioned in the previous section symmetric
groups S3 and S4 and all dihedral groups are totally unramified. The smallest example of a group that is
not totally unramified is SL2(F3), same as in the totally pseudo-unramified case.

We draw attention to the theorem that addresses a concept similar to “unramified over.”

Theorem 5.1. [32] Let H be a subgroup of G. For every irreducible character χ ∈ Irr(G) the restriction
χ |H is multiplicity free if and only if the centralizer CCG(CH) of the group algebra CH is commutative.

We get the following corollary.

Corollary 5.2. Let N be an abelian normal subgroup of G. If the centralizer CCG(CH) is commutative,
then G is unramified over N.

The converse does not hold, the reason being that in the definition of “unramified over” we allow
restrictions to be multiples of the trivial character. Any totally unramified group that is not metabelian
(such as S4) provides a concrete example where the converse fails.

As in the case of totally pseudo-unramified groups a (normal) subgroup of a totally unramified group
is not necessarily totally unramified.

Example 5.3. The group D16 × S3 (with GAP group ID [96, 117]) is totally unramified and contains
a normal subgroup with structure description(C3 × D8) � C2 (group ID [48, 15]), that is not totally
unramified.

Totally pseudo-unramified groups are closed under direct products but not closed under quotients.
In the case of totally unramified groups the things are reversed.

Proposition 5.4. Let ϕ : G → H be a surjective group homomorphism.

1. If G is unramified over a nontrivial abelian normal subgroup N and M = ϕ(N) is nontrivial, then H
is unramified over M.

2. If G is totally unramified, then H is totally unramified.
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Proof. (1) There are bijections given by inflation Inf : Irr(H) → {χ ∈ Irr(G) | ker ϕ ⊆ ker χ} and
Inf : Irr(M) → {χ ∈ Irr(N) | ker ϕ|N ⊆ ker χ}. We note that Inf(χ |M) = (Inf χ)|N .

For any χ ∈ Irr(H) we consider its inflation Inf χ ∈ Irr(G). The restriction (Inf χ)|N is multiplicity
free or a multiple of the trivial character, whence the same must hold for Inf(χ |M) and χ |M .

(2) Let G be totally unramified and
1 = N0 � N1 � · · · � Nn−1 � Nn = G

a series of normal subgroups such that Nj+1/Nj is abelian and G1/Nj is unramified over Nj+1/Nj.
Consider the series

1 = ϕ(N0) ⊆ ϕ(N1) ⊆ · · · ⊆ ϕ(Nn−1) ⊆ ϕ(Nn) = H.
We can assume that all the inclusions are strict, otherwise we can remove the redundant elements.
By ϕ̄ : G/Nj → H/ϕ(Nj) we denote the induced homomorphism and note that it is surjective. The
group ϕ(Nj+1)/ϕ(Nj) ∼= ϕ̄(Nj+1/Nj) is abelian. The group H/ϕ(Nj) ∼= ϕ̄(G/Nj) is unramified over
ϕ(Nj+1)/ϕ(Nj) ∼= ϕ̄(Nj+1/Nj) by (1).

An example of a direct product of totally unramified groups that is not totally unramified is S4 × S4.
The next results narrow down the candidates for abelian normal subgroups N of G over which G is

potentially unramified.

Proposition 5.5. Let G be a finite group and N a nontrivial central subgroup (1 � N ⊆ Z(G)). Then G is
unramified over N if and only if G is abelian.

Proof. Because N is central we have IG(μ) = G for every μ ∈ Irr(N). By (1) of Proposition 2.8, we
have Irrμ(G) ⊂ Lin(G) for any nontrivial μ ∈ Irr(N). Assume that G is not abelian, then there exists
χ ∈ Irr(G) with χ(1) > 1. We note that χ ∈ Irrτ (G). Next take any θ ∈ Irrμ(G) for some nontrivial
μ ∈ Irr(N). Then θχ is an irreducible character of G, (θχ)(1) = χ(1) > 1 and (θχ)|N = χ(1)μ, which
is a contradiction.

The backwards implication is obvious.

Corollary 5.6. If a group G is unramified over N, then either N = [N, G] or [N, G] = G′. In particular
N ⊆ G′ or G′ ⊆ N.

Proof. If [N, G] �= N, then G/[N, G] is unramified over N/[N, G] by Proposition 5.4. The subgroup
N/[N, G] is central in G/[N, G], hence G/[N, G] is abelian by Proposition 5.5.

To reduce the number of recursive steps in the definition of a totally unramified group we would like
to take an abelian normal subgroup as big as possible, however, there are limitations.

Proposition 5.7. Let G be unramified over N and let M � N be an abelian normal subgroup of G. Then
G is unramified over M if and only if G/N is unramified over M/N.

Proof. Assume G/N is unramified over M/N. For any χ ∈ Irr(G) we have two options: χ |N is a sum
of distinct irreducible characters or χ |N is a multiple of the trivial character. In the first case χ |M must
be a sum of distinct irreducible characters of M otherwise an irreducible character would also appear
multiple times in (χ |N) = (χ |M)|N . In the second case χ is induced from a character χ̄ ∈ Irr(G/N).
We have χ |M = Ind(χ̄ |M/N). Since χ̄ |M/N is a multiple of the trivial character or multiplicity free, so is
χ |M .

Conversely, if G is unramified over M, then by Proposition 5.4, G/N is unramified over M/N.

Corollary 5.8. Let G be unramified over N and assume Z(G) �⊂ N. Then G is unramified over Z(G)N if
and only if G′ ⊆ N.
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Proof. By Propositionsrefprop-cent, G is unramified over Z(G)N if and only if G/N is unramified over
Z(G)N/N. We notice that Z(G)N/N is nontrivial and central in G/N, therefore, by Proposition 5.7, G is
unramified over Z(G)N if and only if G/N is abelian.

There indeed exist examples of totally unramified groups that are not unramified over any abelian
normal subgroup that contains the center. One such group is C3 � ((C10 × C2) � C2) with GAP group
ID [120, 11].

We proceed with a cohomological characterization of the notion of “unramified over”.

Theorem 5.9. Let N be a nontrivial abelian normal subgroup of G. Then G is unramified over N if and
only if for all nontrivial μ ∈ Irr(N) the following conditions are satisfied:

1. IG(μ)/N is abelian;
2. for any 2-cocycle f ∈ Z2(IG(μ)/N, N) defining the extension from IG(μ)/N to IG(μ), the class of the

factor set [μ ◦ f ] ∈ M(IG(μ)/N) is trivial.

Proof. By (1) of Proposition 2.8, G is unramified over N if and only if for every nontrivial character
μ ∈ Irr(N), every representation in IRRμ(IG(μ)) is of degree one. By Lemma 2.11, instead of the degrees
of IRRμ(IG(μ)) we can consider the degrees of irreducible projective representations IRRπ (IG(N)/N),
where π is any representative of [μ ◦ f ].

If [μ◦ f ] is trivial, then we consider the degrees of linear representations IRR(IG(μ)/N). We note that
IG(μ)/N is abelian if and only if all its irreducible linear representations are of degree one. If [μ ◦ f ] is
not trivial, then by Lemma 2.10, none of the irreducible (μ ◦ f )-representations of IG(μ)/N is of degree
one. Hence IRRμ(IG(μ)) contains only representations of degree 1 if and only if IG(μ)/N is abelian and
[μ ◦ f ] trivial.

Next we combine Theorem 5.9 with the exact sequence (2.1).

Corollary 5.10. A group G is unramified over N if and only if for every subgroup H of G containing N such
that LinH(N) is nontrivial, the map TH : LinH(N) → M(H/N) is trivial and H/N is abelian.

Proof. We begin with the forward implication. If H is of the form IG(μ) for some μ ∈ Irr(N), we can
directly use Theorem 5.9. Next take an arbitrary subgroup H containing N and a nontrivial character
μ ∈ LinH(N), then H ⊆ IG(μ), therefore H/N is abelian. Also TH(μ) is equal to the restriction of
TIG(μ)(μ) to H/N, hence it is trivial.

To prove the backwards implication we just apply the assumptions to the inertia subgroups.

Using Theorem 5.9 we provide two classes of totally unramified groups.

Corollary 5.11. (1) A group G is unramified over an abelian normal subgroup N if IG(μ)/N is cyclic for
all μ ∈ Irr(N). In particular, if G/N is cyclic, then G is unramified over N.

(2) Metacyclic groups are totally unramified.

Proof. Since the Schur multiplier of a cyclic group is trivial we can apply Theorem 5.9.

Corollary 5.12. Semidirect products of abelian groups are totally unramified.

Proof. Let G = A � B be a semidirect product of abelian groups. We show that G is unramified over
A. The inertia subgroups of the characters of A are of the form A � C, for some subgroup C of B. Then
the 2-cocycle f defining the extension from A to A � C is associated to the trivial one and hence λ ◦ f is
associated to the trivial 2-cocycle. We now apply Theorem 5.9.
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5.1. Isoclinism

The notion of isoclinism was introduced by Hall [20]. For any group G we have the induced commutator
map G/Z(G) × G/Z(G) → G′ defined by

(g1Z(G), g2Z(G)) �→ [g1, g2].
Groups G and H are isoclinic if there exist isomorphisms ϕ : G/Z(G) → H/Z(H) and ψ : G′ → H′
that commute with the commutator map, that is, if ϕ(giZ(G)) = hiZ(H) for i = 1, 2, then ψ[g1, g2] =
[h1, h2]. An equivalence class with respect to isoclinism is called an (isoclinism) family, a group of the
smallest order in a family is called a stem group.

Groups from the same family share some properties concerning their representations and we will
make use of this in our study of totally unramified groups.

Lemma 5.13. Let G and H be finite groups and let ϕ : G/Z(G) → H/Z(H) and ψ : G′ → H′ satisfy the
isoclinism conditions and let N be a nontrivial normal subgroup of G containing Z(G) and let M be the
biggest normal subgroup of H satisfying ϕ(N/Z(G)) = ϕ(M/Z(H)).

1. If N is abelian, then M is abelian.
2. G/N is isomorphic to H/M.
3. Let ρH be an irreducible linear representation of H, P a descent of ρH to H/Z(H) and ρG any lift of

ϕ∗P to a linear representation of G. The restriction ρH|M is multiplicity free (trivial) if and only if ρG|N
is multiplicity free (trivial).

4. If N is abelian, then G is unramified over N if and only if H is unramified over M.

Proof. (1) For any h1, h2 ∈ M take g1, g2 ∈ N such that ϕ(giZ(G)) = hiZ(H), then [h1, h2] = ψ[g1, g2] =
ψ(1) = 1.

(2) By Noether’s isomorphism theorems we have

G/N ∼= G/Z(G)

N/Z(G)
∼= H/Z(H)

M/Z(H)
∼= H/M.

(3) It is enough to prove the statement in one direction. The other follows from the symmetry of
isoclinism. Let ρH be an irreducible linear representation of H of degree n and let ρH|M = ⊕n

i=1 σ i
H be

the decomposition into irreducible summands. Suppose the restriction is multiplicity free or trivial. Let
P be the projective representation obtained by descent of ρ to H/Z(H). Then P|M/Z(H) is a direct sum
of descents of σ i

H , i = 1, . . . , n. Let the linear representation ρG of G be a lift of ϕ∗P. Then ϕ∗(P|M/Z(H))

is also descent of ρG|N , hence, ρG|N is multiplicity free (trivial) as well.
(4) By [6, Ch. 3, Cor. 2.5], an irreducible projective representation of G/Z(G) ∼= H/Z(G) lifts to a

linear representation of G if and only if it lifts to a linear representation of H, therefore, we can use (3)
on each irreducible representation of H.

We move to a case where G is unramified over a normal abelian subgroup N with N ⊂ G′.

Lemma 5.14. Let G and H be finite groups and let ϕ : G/Z(G) → H/Z(H) and ψ : G′ → H′ satisfy the
isoclinism conditions.

1. For any g ∈ G and h ∈ H, such that ϕ(gZ(G)) = hZ(H), and any n ∈ G′ we have ψ(gng−1) =
hψ(n)h−1. In particular, for any normal subgroup N of G contained in G′ the image ψ(N) is a normal
subgroup of H.

2. For any normal subgroup N of G contained in G′ the quotient G/N is isoclinic to H/ψ(N).
3. For any projective representation P of H/Z(H), its lift to a linear representation ρH of group the H and

any lift of a representation ϕ∗P to a linear representation ρG of group the G, we have ρG|N = ψ∗(ρH|M).
4. If G in unramified over a nontrivial normal abelian subgroup N contained in G′ then H is unramified

over ψ(N).
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Proof. (1) It is enough to consider commutators. Let n = [g1, g2] and m = ψ(n). Take h1, h2 ∈ H such
that ϕ(giZ(G)) = hiZ(H), then we have m = [h1, h2]. Take any h ∈ H and let g ∈ G be such that
ϕ(gZ(G)) = hZ(H). We get

hmh−1 = [hh1h−1, hh2h−1] and gng−1 = [gg1g−1, gg2g−1],
which shows that ψ(gng−1) = hmh−1.

(2) Denote M = ψ(N). For (gN)Z(G/N) ∈ (G/N)/Z(G/N) we define ϕ̄((gN)Z(G/N)) =
(hM)Z(H/M), where h ∈ H is any element satisfying ϕ(gZ(G)) = hZ(H). This yields a well defined
isomorphism. Then ϕ̄ : (G/N)/Z(G/N) → (H/M)/Z(H/M) and ψ̄ : G′/N → H′/M, where ψ̄(xN) =
ψ(x)M, satisfy the isoclinism conditions.

(3) Pick transversals {hα | α ∈ H/Z(H)} and {gα | α ∈ G/Z(G)}. Representations ρH and ρG are
given by ρH(zhα) = λ(z)P(α) and ρG(wgα) = μ(w)P(ϕ(α)), for some linear characters λ and μ of
Z(H) and Z(G), respectively.

It is enough to show the desired equality ρG(n) = ψ∗(ρH|M)(n) for a commutator n = [gα , gβ ] where
gα and gβ are from the transversal. We show the identity by expanding

ρG(n) = [ρG(gα), ρG(gβ)] = [P(ϕ(α)), P(ϕ(β))]
and

ρH(ψ(n)) = ρH([hϕ(α), hϕ(β)]) = [P(ϕ(α)), P(ϕ(β))].
(4) Any irreducible linear representation of G is a lift of an irreducible projective representation of

G/Z(G). By [6, Ch. 3, Cor. 2.5], an irreducible projective representation of G/Z(G) ∼= H/Z(G) lifts
to a linear representation of G if and only if it lifts to a linear representation of H. The restriction of
lifts to G′ and H′, respectively, yield equivalent representations of, by (3), and therefore, restrictions to
N ∼= ψ(N) are equivalent as well. Hence, the restriction of every irreducible linear representation of G
to N is multiplicity free or trivial if and only if restriction of every irreducible linear representation of H
to ψ(N) is multiplicity free or trivial.

Finally we combine the two cases.

Theorem 5.15. If an isoclinic family contains a totally unramified group, then every finite group in this
family is totally unramified.

Proof. All finite groups in the family of abelian groups are totally unramified. Consider finite represen-
tatives G and H of a nonabelian isoclinic family. If G is totally unramified then there exists a normal
abelian group N such that G is unramified over N, G/N is totally unramified and G′ ⊆ N or N ⊆ G′
by Corollary 5.6. In the case G′ ⊆ N we can always assume Z(G) ⊆ N, otherwise use Corollary 5.8 to
replace N with Z(G)N. Then we use Lemma 5.13 to find a normal abelian subgroup M of H such that
H is unramified over M and H/M ∼= G/N is abelian, hence, totally unramified. In the case N ⊆ G′ we
use Lemma 5.14 to find a normal abelian subgroup M of H such that H is unramified over M and H/M
is isoclinic to G/N and finish the proof by recursion.

Although a direct product of totally unramified group need not be totally unramified we have the
following weaker result.

Corollary 5.16. A direct product of a totally unramified group and an abelian group is totally unramified.

Proof. A group G is isoclinic to G × A for any abelian group A, hence, the result follows from
Theorem 5.15.
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6. Nilpotent totally unramified groups

In this section we prove some stronger results for nilpotent totally unramified groups.

Corollary 6.1. If G is metabelian nilpotent, then it is not unramified over G′.

Proof. Directly from Corollary 4.11.

This yields a new proof of a well-known result.

Corollary 6.2. If G is a metabelian nilpotent group that is not abelian, then G/G′ is not cyclic.

Proof. By Corollary 6.1, G is not unramified over G′, hence the quotient G/G′ is not cyclic by Corol-
lary 5.11.

We can improve Corollary 5.6 for nilpotent groups.

Corollary 6.3. If a nilpotent group G is unramified over N, then [N, G] = G′.

Proof. Follows directly from Corollary 5.6, as a nilpotent group G does not contain any nontrivial abelian
subgroup N with property [N, G] = N.

Being nilpotent totally unramified is a very restrictive property.

Theorem 6.4. If a nilpotent group G is unramified over an abelian normal subgroup N, then G′ � N. In
particular every totally unramified nilpotent group is metabelian.

Proof. By Corollary 6.3, we get G′ ⊆ N and the equality is excluded since [G′, G] � G′.

Contrary to the general case nilpotent totally unramified groups are closed under the direct product.

Proposition 6.5. If G1 and G2 are totally unramified nilpotent groups, then G1 × G2 is totally unramified.

Proof. Let Gi be unramified over Ni, we show that G1 ×G2 is unramified over N1 ×N2, then the quotient
is abelian and we are done.

Every irreducible character of G1 × G2 is of the form χ1 ⊗ χ2 where χi is an irreducible character
of Gi. We get (χ1 ⊗ χ2)|N1×N2 = χ1|N1 ⊗ χ2|N2 and each χi|Ni is multiplicity free or a multiple of the
trivial character. We consider two cases; either both of χi|Ni are multiplicity free or at least one of them
is a multiple of the trivial character.

Let χ1|N1 = ∑m
i=1 μi and χ2|N2 = ∑n

j=1 θj, where μi and θj are pairwise distinct characters of N1
and N2 respectively. Then χ1|N1 ⊗ χ2|N2 = ∑

i,j μi ⊗ θj and μi ⊗ θj are pairwise distinct.
Let χ1|N1 be a multiple of the trivial character. By Theorem 6.4, N1 contains G′

1 and therefore ker(χ1)
contains G′

1. This forces χ1 to be linear. The restriction χ1|N1 ⊗χ2|N2 = τ ⊗χ2|N2 is clearly multiplicity
free or a multiple of the trivial character. The case where χ2|N2 is a multiple of the trivial character is
symmetric.

If G is unramified over N and M is an abelian normal subgroup containing N, G is not necessarily
unramified over M. This obstacle does not apply to nilpotent groups.

Proposition 6.6. If a nilpotent group G is unramified over a nontrivial abelian normal subgroup N, then
G is unramified over any abelian normal subgroup containing N.
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Proof. Let M be an abelian normal subgroup of G containing N. By Theorem 6.4, G/N is abelian. An
abelian group is unramified over any nontrivial subgroup. By Proposition 5.7, G is unramified over M.

6.1. Totally unramified p-groups

Every nilpotent group is a direct product of p-groups. Thus Propositions 5.4 and 6.5 show that a nilpotent
group is totally unramified if and only if its Sylow p-subgroups are totally unramified. It is therefore of
interest to understand totally unramified p-groups. We classify totally unramified p-group of rank at
most 5 starting with rank at most 4.

Proposition 6.7. Every p-group of rank at most 4 is totally unramified.

Proof. Groups of order p and p2 are abelian and every group of order p3 is metacyclic, hence totally
unramified by Corollary 5.11. Every group G of order p4 has an abelian normal subgroup N of order p3

[7]. Then G/N is cyclic and by Proposition 5.11, G is totally unramified.

We continue with groups of order p5. We separate the cases p = 2 and p ≥ 3. For p = 2 we use
GAP for direct computation. All groups of order 25 are totally unramified. There are groups of order
26 that are not totally unramified but are totally pseudo-unramified and also groups that are not totally
pseudo-unramified.

To classify the totally unramified p-groups it is enough, by Theorem 5.15, to classify isoclinism
families that contain a totally unramified group. For p ≥ 3 we use the classification of p-groups by
[23], where we also refer to for the explanation of the classification and notation. We just mention that
isoclinism families are denoted by �s, s = 1, 2, . . . and if the word [gi, gj] where gi and gj are generators
does not appear among relations of the group presentation, the relation [gi, gj] = 1 should be assumed.

There are 10 families of p-groups (p ≥ 3) that contain a stem group of rank at most 5; �1, �2, . . . , �10.
The family �1 contains all abelian groups. The families �2 and �3 have a stem group of rank 3 and 4
respectively which are totally unramified by Proposition 6.7. The remaining families with a stem group
of rank 5 are �4, �5, . . . , �10. We deal with each family separately.

By Proposition 6.6 and Theorem 6.4, to check whether a p-group G is totally unramified we only have
to consider maximal abelian normal subgroups of G that strictly contain G′. We use Corollaries 5.11 and
5.12 to give positive answers.

(�4) We consider

�4(14) = 〈α, α1, α2, β1, β2 | [αi, α] = βi, αp = α
p
i = β

p
i = 1 for i = 1, 2〉.

The subgroup 〈α, β1, β2〉 is abelian normal and has the abelian subgroup 〈α1, α2〉 as a com-
plement, i.e., the group �4(14) is a semidirect product of abelian groups and therefore totally
unramified.

(�5) We consider

�5(15) = 〈α1, α2, α3, α4, β | [α1, α2] = [α2, α3] = β , αp
i = βp = 1 for i = 1, 2, 3, 4〉.

The subgroup 〈α1, α3, β〉 is abelian normal and has the abelian subgroup 〈α2, α4〉 as a com-
plement, i.e., the group �5(15) is a semidirect product of abelian groups and therefore totally
unramified.

(�6) We consider

�6(15) = 〈α1, α2, β , β1, β2 | [α1, α2] = β , [β , αi] = βi, α
p
i = βp = β

p
i = 1 for i = 1, 2〉.

The commutator subgroup 〈β , β1, β2〉 is a maximal abelian normal subgroup, therefore the group
�6(15) is not totally unramified.
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(�7) We consider

�7(15) = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β] = α3, αp = α
(p)

1 = α
p
i+1 = βp = 1 for i = 1, 2〉.

The subgroup 〈α1, α2, α3〉 is abelian normal and has the abelian subgroup 〈α, β〉 as a complement,
i.e., the group �7(15) is a semidirect product of abelian groups and therefore totally unramified.

(�8) We consider

�8(32) = 〈α1, α2, β | [α1, α2] = β = α
p
1 , βp2 = α

p2

2 = 1〉.
The subgroup 〈α1, β〉 is abelian normal and has a cyclic quotient 〈α2〉. Therefore the group �9(15)
is totally unramified.

(�9) We consider

�9(15) = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, αp = α
(p)
1 = α

(p)

i+1 = 1 for i = 1, 2, 3〉.
The subgroup 〈α1, α2, α3, α4〉 is abelian normal and has a cyclic quotient 〈α〉. Therefore the group
�9(15) is totally unramified.

(�10) We consider

�10(15) = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, [α1, α2] = α4, αp = α
(p)
1 = α

(p)

i+1 = 1 for i = 1, 2, 3〉.
The commutator subgroup 〈α2, α3, α4〉 is a maximal abelian normal subgroup, therefore the
group �6(15) is not totally unramified.

Remark 6.8. There exist totally unramified groups (of order at least p4) that are not semidirect products
of abelian groups. Additionally, �7(2111) is totally unramified but is not a semidirect product of abelian
groups and does not contain any abelian normal subgroup with a cyclic quotient.

The classification of totally unramified p-groups of rank at most 5 also classifies totally pseudo-
unramified p-groups of rank at most 5.

Proposition 6.9. A p-group of rank at most 5 is totally unramified if and only if it is totally pseudo-
unramified.

Proof. We only have to prove the backwards implication for p ≥ 3. If G is p-group of rank at most 5 and
not totally unramified, then it is from the isoclinism family �6 or �10. We note that these groups have
|G′| = p3 and hence | Lin(G)| = |G/G′| = p2.

Assume G is pseudo-unramified over N and not totally unramified. Then G/N is not abelian,
otherwise G would be unramified over N, thus totally unramified. However, G/N is metabelian, therefore
| Lin(G/N)| = |(G/N)/(G/N)′| ≥ p2 by Corollary 6.2. Then the inf : Lin(G/N) → Lin(G) is surjective.
Restriction and TG from the exact sequence (2.1) are trivial maps, hence LinG(N) ∼= N/[N, G] must be
trivial which is a contradiction since N �= [N, G].

We give reasoning for the family �11 with a stem group of rank 6 which provides examples of groups
of nilpotency class 2 that are not totally unramified and an example of a totally pseudo-unramified
p-group that is not totally unramified.

(�11) We consider

�11(16) = 〈α1, β1, α2, β2, α3, β3 | [α1, α2] = β3, [α2, α3] =β1, [α3, α1] = β3,

α
p
i = β

p
i = 1 for i = 1, 2, 3〉.

The commutator subgroup 〈β1, β2, β3〉 is also the center. There are three maximal abelian normal
subgroups Ni = 〈αi, β1, β2, β3〉 for i = 1, 2, 3. We have βi �∈ [Ni, G], therefore G is not unramified
over Ni by Corollary 6.3, hence not totally unramified.
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Furthermore, the decomposition �11(16) = 〈α1, β2, β3〉 � 〈β1, α2, α3〉 shows that �11(16) is totally
pseudo-unramified by Corollary 4.10. Hence, we cannot extend the Proposition 6.9 to groups of order p6.
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