Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (Martina Štampar) .

1 - 10 / 13
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
In vitro hepatic 3D cell models and their application in genetic toxicology : a systematic review
Martina Štampar, Bojana Žegura, 2024, pregledni znanstveni članek

Povzetek: The rapid development of new chemicals and consumer products has raised concerns about their potential genotoxic effects on human health, including DNA damage leading to serious diseases. For such new chemicals and pharmaceutical products, international regulations require genotoxicity data, initially obtained through in vitro tests, followed by in vivo experiments, if needed. Traditionally, laboratory animals have been used for this purpose, however, they are costly, ethically problematic, and often unreliable due to species differences. Therefore, innovative more accurate in vitro testing approaches are rapidly being developed to replace, refine and reduce (3R) the use of animals for experimental purposes and to improve the relevance for humans in toxicology studies. One of such innovative approaches are in vitro three-dimensional (3D) cell models, which are already being highlighted as superior alternatives to the two-dimensional (2D) cell cultures that are traditionally used as in vitro models for the safety testing of chemicals and pharmaceuticals. 3D cell models provide physiologically relevant information and more predictive data for in vivo conditions. In the review article, we provide a comprehensive overview of 3D hepatic cell models, including HepG2, HepG2/C3A, HepaRG, human primary hepatocytes, and iPSC-derived hepatocytes, and their application in the field of genotoxicology. Through a detailed literature analysis, we identified 31 studies conducted between 2007 and April 2024 that used a variety of standard methods, such as the comet assay, the micronucleus assay, and the γH2AX assay, as well as new methodological approaches, including toxicogenomics, to assess the cytotoxic and genotoxic activity of chemicals, nanoparticles and natural toxins. Based on our search, we can conclude that the use of in vitro 3D cell models for genotoxicity testing has been increasing over the years and that 3D cell models have an even greater potential for future implementation and further refinement in genetic toxicology and risk assessment.
Ključne besede: genotoxicity, advanced 3D in vitro models, hepatic cells, spheroids, comet assay, micronucleus assay, genotoxicology, toxicological studies
Objavljeno v DiRROS: 14.11.2024; Ogledov: 120; Prenosov: 59
.pdf Celotno besedilo (1,32 MB)
Gradivo ima več datotek! Več...

2.
Evidence driven indoor air quality improvement : an innovative and interdisciplinary approach to improving indoor air quality
Mario Lovrić, Goran Gajski, Jessica Fernández-Agüera, Mira Pöhlker, Bojana Žegura, Matjaž Novak, Alja Štern, Katja Kološa, Martina Štampar, 2024, pregledni znanstveni članek

Povzetek: Indoor air pollution is a recognized emerging threat, claiming millions of lives annually. People are constantly exposed to ambient and indoor air pollution. The latest research shows that people in developed countries spend up to 90% of their time indoors and almost 70% at home. Although impaired IAQ represents a significant health risk, it affects people differently, and specific populations are more vulnerable: children, the elderly, and people with respiratory illnesses are more sensitive to these environmental risks. Despite rather extensive research on IAQ, most of the current understanding about the subject, which includes pollution sources, indoor–outdoor relationships, and ventilation/filtration, is still quite limited, mainly because air quality monitoring in the EU is primarily focused on ambient air quality and regulatory requirements are lacking for indoor environments. Therefore, the EDIAQI project aims to improve guidelines and awareness for advancing the IAQ in Europe and beyond by allowing user-friendly access to information about indoor air pollution exposures, sources, and related risk factors. The solution proposed with EDIAQI consists of conducting a characterization of sources and routes of exposure and dispersion of chemical, biological, and emerging indoor air pollution in multiple cities in the EU. The project will deploy cost-effective/user-friendly monitoring solutions to create new knowledge on sources, exposure routes, and indoor multipollutant body burdens. The EDIAQI project brings together 18 organizations from 11 different European countries that provide interdisciplinary skills and expertise in various fields, including environmental science and technology, medicine, and toxicology, as well as policy design and public engagement.
Ključne besede: indoor air pollution, health risk, vulnerable populations, IAQ (Indoor Air Quality), EDIAQI project, monitoring solutions, exposure routes
Objavljeno v DiRROS: 06.11.2024; Ogledov: 109; Prenosov: 70
.pdf Celotno besedilo (2,15 MB)
Gradivo ima več datotek! Več...

3.
New approach methodologies to facilitate and improve the hazard assessment of non-genotoxic carcinogens : a PARC project
Marc Audebert, Ann-Sophie Assmann, Amaya Azqueta, Pavel Babica, Emilio Benfenati, Martina Štampar, Bojana Žegura, 2023, pregledni znanstveni članek

Povzetek: Carcinogenic chemicals, or their metabolites, can be classified as genotoxic or non-genotoxic carcinogens (NGTxCs). Genotoxic compounds induce DNA damage, which can be detected by an established in vitro and in vivo battery of genotoxicity assays. For NGTxCs, DNA is not the primary target, and the possible modes of action (MoA) of NGTxCs are much more diverse than those of genotoxic compounds, and there is no specific in vitro assay for detecting NGTxCs. Therefore, the evaluation of the carcinogenic potential is still dependent on long-term studies in rodents. This 2-year bioassay, mainly applied for testing agrochemicals and pharmaceuticals, is time-consuming, costly and requires very high numbers of animals. More importantly, its relevance for human risk assessment is questionable due to the limited predictivity for human cancer risk, especially with regard to NGTxCs. Thus, there is an urgent need for a transition to new approach methodologies (NAMs), integrating human-relevant in vitro assays and in silico tools that better exploit the current knowledge of the multiple processes involved in carcinogenesis into a modern safety assessment toolbox. Here, we describe an integrative project that aims to use a variety of novel approaches to detect the carcinogenic potential of NGTxCs based on different mechanisms and pathways involved in carcinogenesis. The aim of this project is to contribute suitable assays for the safety assessment toolbox for an efficient and improved, internationally recognized hazard assessment of NGTxCs, and ultimately to contribute to reliable mechanism-based next-generation risk assessment for chemical carcinogens.
Ključne besede: non-genotoxic carcinogens, NGTxC, new approach methodologies, NAM, PARC
Objavljeno v DiRROS: 05.08.2024; Ogledov: 262; Prenosov: 140
.pdf Celotno besedilo (761,23 KB)
Gradivo ima več datotek! Več...

4.
Genotoxic effects of cylindrospermopsin, microcystin-LR and their binary mixture in human hepatocellular carcinoma (HepG2) cell line
Leticia Díez-Quijada, Klara Hercog, Martina Štampar, Metka Filipič, Ana M. Cameán, Angeles Jos, Bojana Žegura, 2020, izvirni znanstveni članek

Povzetek: Simultaneous occurrence of cylindrospermopsin (CYN) and microcystin-LR (MCLR) has been reported in the aquatic environment and thus human exposure to such mixtures is possible. As data on the combined effects of CYN/MCLR are scarce, we aimed to investigate the adverse effects related to genotoxic activities induced by CYN (0.125, 0.25 and 0.5 µg/mL) and MCLR (1 µg/mL) as single compounds and their combinations in HepG2 cells after 24 and 72 h exposure. CYN and CYN/MCLR induced DNA double-strand breaks after 72 h exposure, while cell cycle analysis revealed that CYN and CYN/MCLR arrested HepG2 cells in G0/G1 phase. Moreover, CYN and the combination with MCLR upregulated CYP1A1 and target genes involved in DNA-damage response (CDKN1A, GADD45A). Altogether, the results showed that after 72 h exposure genotoxic activity of CYN/MCLR mixture was comparable to the one of pure CYN. On the contrary, MCLR (1 µg/mL) had no effect on the viability of cells and had no influence on cell division. It did not induce DNA damage and did not deregulate studied genes after prolonged exposure. The outcomes of the study confirm the importance of investigating the combined effects of several toxins as the effects can differ from those induced by single compounds.
Objavljeno v DiRROS: 23.07.2024; Ogledov: 267; Prenosov: 208
.pdf Celotno besedilo (1,68 MB)
Gradivo ima več datotek! Več...

5.
Characterization of In vitro 3D cell model developed from human hepatocellular carcinoma (HepG2) cell line
Martina Štampar, Barbara Breznik, Metka Filipič, Bojana Žegura, 2020, izvirni znanstveni članek

Povzetek: In genetic toxicology, there is a trend against the increased use of in vivo models as highlighted by the 3R strategy, thus encouraging the development and implementation of alternative models. Two-dimensional (2D) hepatic cell models, which are generally used for studying the adverse effects of chemicals and consumer products, are prone to giving misleading results. On the other hand, newly developed hepatic three-dimensional (3D) cell models provide an attractive alternative, which, due to improved cell interactions and a higher level of liver-specific functions, including metabolic enzymes, reflect in vivo conditions more accurately. We developed an in vitro 3D cell model from the human hepatocellular carcinoma (HepG2) cell line. The spheroids were cultured under static conditions and characterised by monitoring their growth, morphology, and cell viability during the time of cultivation. A time-dependent suppression of cell division was observed. Cell cycle analysis showed time-dependent accumulation of cells in the G0/G1 phase. Moreover, time-dependent downregulation of proliferation markers was shown at the mRNA level. Genes encoding hepatic markers, metabolic phase I/II enzymes, were time-dependently deregulated compared to monolayers. New knowledge on the characteristics of the 3D cell model is of great importance for its further development and application in the safety assessment of chemicals, food products, and complex mixtures.
Objavljeno v DiRROS: 22.07.2024; Ogledov: 260; Prenosov: 199
.pdf Celotno besedilo (2,24 MB)
Gradivo ima več datotek! Več...

6.
Hepatocellular carcinoma (HepG2/C3A) cell-based 3D model for genotoxicity testing of chemicals
Martina Štampar, Helle Frandsen, Adelina Rogowska-Wrzesinska, Krzysztof Wrzesinski, Metka Filipič, Bojana Žegura, 2021, izvirni znanstveni članek

Povzetek: The major weakness of the current in vitro genotoxicity test systems is the inability of the indicator cells to express metabolic enzymes needed for the activation and detoxification of genotoxic compounds, which consequently can lead to misleading results. Thus, there is a significant emphasis on developing hepatic cell models, including advanced in vitro three-dimensional (3D) cell-based systems, which better imitate in vivo cell behaviour and offer more accurate and predictive data for human exposures. In this study, we developed an approach for genotoxicity testing with 21-day old spheroids formed from human hepatocellular carcinoma cells (HepG2/C3A) using the dynamic clinostat bioreactor system (CelVivo BAM/bioreactor) under controlled conditions. The spheroids were exposed to indirect-acting genotoxic compounds, polycyclic aromatic hydrocarbon [PAH; benzo(a) pyrene B(a)P], and heterocyclic aromatic amine [PhIP]) at non-cytotoxic concentrations for 24 and 96 h. The results showed that both environmental pollutants B(a)P and PhIP significantly increased the level of DNA strand breaks assessed by the comet assay. Further, the mRNA level of selected genes encoding metabolic enzymes from phase I and II, and DNA damage responsive genes was determined (qPCR). The 21-day old spheroids showed higher basal expression of genes encoding metabolic enzymes compared to monolayer culture. In spheroids, B(a)P or PhIP induced compound-specific up-regulation of genes implicated in their metabolism, and deregulation of genes implicated in DNA damage and immediate-early response. The study demonstrated that this model utilizing HepG2/C3A spheroids grown under dynamic clinostat conditions represents a very sensitive and promising in vitro model for genotoxicity and environmental studies and can thus significantly contribute to a more reliable assessment of genotoxic activities of pure chemicals, and complex environmental samples even at very low for environmental exposure relevant concentrations.
Ključne besede: in vitro 3D cell model, 21-day old spheroids, cytotoxic, genotoxic, gene expression
Objavljeno v DiRROS: 19.07.2024; Ogledov: 252; Prenosov: 227
.pdf Celotno besedilo (2,08 MB)
Gradivo ima več datotek! Več...

7.
HepG2 spheroids as a biosensor-like cell-based system for (geno)toxicity assessment
Martina Štampar, Sonja Žabkar, Metka Filipič, Bojana Žegura, 2022, izvirni znanstveni članek

Povzetek: 3D spheroids developed from HepG2 cells were used as a biosensor-like system for the detection of (geno)toxic effects induced by chemicals. Benzo(a)pyrene (B(a)P) and amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) with well-known mechanisms of action were used for system validation. HepG2 spheroids grown for 3 days were exposed to BaP and PhIP for 24 and 72 h. The growth and viability of spheroids were monitored by planimetry and Live/Dead staining of cells. Multi-parametric flow cytometric analysis was applied for simultaneous detection of specific end-effects including cell cycle analysis (Hoechst staining), cell proliferation (KI67 marker), and DNA double-strand breaks (ℽH2AX) induced by genotoxic compounds. Depending on the exposure concentration/time, BaP reduced spheroid growth, affected cell proliferation by arresting cells in S and G2 phase and induced DNA double-strand breaks (DSB). Simultaneous staining of ℽH2AX formation and cell cycle analysis revealed that after BaP (10 μM; 24 h) exposure 60% of cells in G0/G1 phase had DNA DSB, while after 72 h only 20% of cells contained DSB indicating efficient repair of DNA lesions. PhIP did not influence the spheroid size whereas accumulation of cells in the G2 phase occurred after both treatment times. The evaluation of DNA damage revealed that at 200 μM PhIP 50% of cells in G0/G1 phase had DNA DSB, which after 72-h exposure dropped to 40%, showing lower repair capacity of PhIP-induced DSB compared to BaP-induced. The developed approach using simultaneous detection of several parameters provides mechanistic data and thus contributes to more reliable genotoxicity assessment of chemicals as a high-content screening tool.
Ključne besede: in vitro 3D cell model, HepG2, flow cytometry, cell cycle, proliferation, DNA strand, breaks
Objavljeno v DiRROS: 16.07.2024; Ogledov: 328; Prenosov: 184
.pdf Celotno besedilo (6,21 MB)
Gradivo ima več datotek! Več...

8.
Combined toxic effects of BPA and its two analogues BPAP and BPC in a 3D HepG2 cell model
Martina Štampar, Tim Ravnjak, Ana-Marija Domijan, Bojana Žegura, 2023, izvirni znanstveni članek

Povzetek: Bisphenol A (BPA) is one of the most commonly used substances in the manufacture ofvarious everyday products. Growing concerns about its hazardous properties, including endocrinedisruption and genotoxicity, have led to its gradual replacement by presumably safer analogues inmanufacturing plastics. The widespread use of BPA and, more recently, its analogues has increasedtheir residues in the environment. However, our knowledge of their toxicological profiles is limitedand their combined effects are unknown. In the present study, we investigated the toxic effectscaused by single bisphenols and by the combined exposure of BPA and its two analogues, BPAP andBPC, after short (24-h) and prolonged (96-h) exposure in HepG2 spheroids. The results showed thatBPA did not reduce cell viability in HepG2 spheroids after 24-h exposure. In contrast, BPAP andBPC affected cell viability in HepG2 spheroids. Both binary mixtures (BPA/BPAP and BPA/BPC)decreased cell viability in a dose-dependent manner, but the significant difference was only observedfor the combination of BPA/BPC (both at 40μM). After 96-h exposure, none of the BPs studiedaffected cell viability in HepG2 spheroids. Only the combination of BPA/BPAP decreased cellviability in a dose-dependent manner that was significant for the combination of 4μM BPA and 4μMBPAP. None of the BPs and their binary mixtures studied affected the surface area and growth ofspheroids as measured by planimetry. In addition, all BPs and their binary mixtures studied triggeredoxidative stress, as measured by the production of reactive oxygen species and malondialdehyde,at both exposure times. Overall, the results suggest that it is important to study the effects of BPsas single compounds. It is even more important to study the effects of combined exposures, as thecombined effects may differ from those induced by single compounds.
Ključne besede: BP analogues, hepatic in vitro 3D cell model, combined exposure, viability, oxidative stress, toxicology
Objavljeno v DiRROS: 12.07.2024; Ogledov: 690; Prenosov: 242
.pdf Celotno besedilo (2,18 MB)
Gradivo ima več datotek! Več...

9.
Impact of deoxynivalenol and zearalenone as single and combined treatment on DNA, cell cycle and cell proliferation in HepG2 cells
Ana-Marija Domijan, Klara Hercog, Martina Štampar, Goran Gajski, Marko Gerić, Marijana Sokolović, Bojana Žegura, 2023, izvirni znanstveni članek

Povzetek: The study aimed to investigate toxicity and the mechanism of toxicity of two Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZEA). DON and ZEA were applied to HepG2 cells as single compounds and in combination at low environmentally relevant concentrations. HepG2 cells were exposed to DON (0.5, 1, and 2 µM), ZEA (5, 10, and 20 µM) or their combinations (1 µM DON + 5 µM ZEA, 1 µM DON + 10 µM ZEA and 1 µM DON + 20 µM ZEA) for 24 h and cell viability, DNA damage, cell cycle and proliferation were assessed. Both mycotoxins reduced cell viability, however, combined treatment with DON and ZEA resulted in higher reduction of cell viability. DON (1 µM) induced primary DNA damage, while DON (1 µM) in combination with higher ZEA concentrations showed antagonistic effects compared to DON alone at 1 µM. DON arrested HepG2 cells in G2 phase and significantly inhibited cell proliferation, while ZEA had no significant effect on cell cycle. The combined treatment with DON and ZEA arrested cells in G2 phase to a higher extend compared to treatment with single mycotoxins. Potentiating effect observed after DON and ZEA co-exposure at environmentally relevant concentrations indicates that in risk assessment and setting governments’ regulations, mixtures of mycotoxins should be considered.
Ključne besede: mycotoxins, comet assay, flow cytometry, co-exposure, food monitoring
Objavljeno v DiRROS: 12.07.2024; Ogledov: 455; Prenosov: 226
.pdf Celotno besedilo (1,60 MB)
Gradivo ima več datotek! Več...

10.
Iskanje izvedeno v 0.33 sek.
Na vrh