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Abstract: Bisphenol A (BPA) is one of the most commonly used substances in the manufacture of
various everyday products. Growing concerns about its hazardous properties, including endocrine
disruption and genotoxicity, have led to its gradual replacement by presumably safer analogues in
manufacturing plastics. The widespread use of BPA and, more recently, its analogues has increased
their residues in the environment. However, our knowledge of their toxicological profiles is limited
and their combined effects are unknown. In the present study, we investigated the toxic effects
caused by single bisphenols and by the combined exposure of BPA and its two analogues, BPAP and
BPC, after short (24-h) and prolonged (96-h) exposure in HepG2 spheroids. The results showed that
BPA did not reduce cell viability in HepG2 spheroids after 24-h exposure. In contrast, BPAP and
BPC affected cell viability in HepG2 spheroids. Both binary mixtures (BPA/BPAP and BPA/BPC)
decreased cell viability in a dose-dependent manner, but the significant difference was only observed
for the combination of BPA/BPC (both at 40 µM). After 96-h exposure, none of the BPs studied
affected cell viability in HepG2 spheroids. Only the combination of BPA/BPAP decreased cell
viability in a dose-dependent manner that was significant for the combination of 4 µM BPA and 4 µM
BPAP. None of the BPs and their binary mixtures studied affected the surface area and growth of
spheroids as measured by planimetry. In addition, all BPs and their binary mixtures studied triggered
oxidative stress, as measured by the production of reactive oxygen species and malondialdehyde,
at both exposure times. Overall, the results suggest that it is important to study the effects of BPs
as single compounds. It is even more important to study the effects of combined exposures, as the
combined effects may differ from those induced by single compounds.

Keywords: BP analogues; hepatic in vitro 3D cell model; combined exposure; viability; oxidative
stress

1. Introduction

Bisphenols are a group of synthetic chemicals used to produce polycarbonate plastics,
epoxy resins, and thermal paper [1–3]. Among them, bisphenol A [4,4′-(propane-2,2-
diyl)diphenol) (BPA)] is still the most frequently used to manufacture a range of everyday
household items, such as baby bottles, food containers, paper products, and kitchen
utensils [4–6]. BPA is an additive and can leach under various conditions from products
such as toys and, more importantly, from bottles and containers into water and food.
The general population is exposed to BPA daily through ingestion, inhalation, or dermal
contact. It is, therefore, ubiquitous in the environment [7–11]. While many synthetic
substances, including BPA, were initially considered harmless, scientists have discovered
their adverse effects on human health and the environment over time. Reports from the late
1990s link BPA to various adverse effects, particularly disruption of the human endocrine
system [12–15]. In addition, BPA has been shown to have genotoxic properties [16–20],
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can affect the reproductive, cardiovascular, immunological and respiratory systems, can
induce tumours [21–25] and can impair cognitive and behavioural development [26]. Due
to safety concerns, the European Union (EU) has restricted the use of BPA to protect human
health and the environment [27]. The U.S. Food and Drug Administration (FDA) banned
the use of BPA in baby cups, bottles, and infant formula packaging in 2012 and 2013,
respectively, marking the beginning of regulatory action against the chemical [28]. In 2017,
the European Chemical Agency (ECHA) added BPA to the Candidate List of Substances
of Very High Concern [29] and the European Food Safety Authority (EFSA) proposed a
daily intake limit being 4 g/kg body weight per day [30]. In 2018, the EU lowered the
migration limit for BPA from 0.6 mg/kg to 0.05 mg/kg in food packaging and banned its
use in baby food and infant formula [29]. The EU products containing BPA must now be
labelled toxic for reproduction. The use of BPA in thermal paper has also been restricted
since 2020 by EU regulations and REACH (Registration, Evaluation, Authorisation and
Restriction of Chemicals) [27,29,31]. As a result, the industry has developed and gradually
substituted BPA with more than 200 chemical analogues that are supposed to be safer
alternatives [25,32–34].

Despite the increased production and use of BP analogues, little is known about
whether the presence, chemical structures, and exposure risks of BPs are related to their
effects. However, BPA has attracted considerable attention over the past two decades
because of its toxicity [7,33,35]. Nevertheless, several BPA analogues have been detected in
the environment, such as indoor dust, sediment, river water, soil, seawater, and sewage
sludge, occasionally at concentrations similar to or greater than BPA [36]. Bisphenol-AP
[4,4′-(1-phenylethylidene)bisphenol (BPAP)] is widely used for the synthesis of polyester
polymers such as epoxy resins, polycarbonates, polyesters, epoxy resins, polyurethanes,
polyethers, polyesters, polyacrylates, and polyether-polyacrylates [37,38], especially as
indispensable plasticizers and flame retardants [39]. Although BPAP is a poorly studied
BPA analogue, it has been confirmed as an endocrine-disrupting compound (EDC) [40].
Bisphenol C [4,4′-isopropylidenedi-o-cresol (BPC)] is one of the most versatile BPs used
in a wide variety of products and articles such as flooring, curtains, furniture, paper
products, construction materials, textiles, toys, electronic devices, and food packaging and
storage [41]. ECHA evaluates BPC under the Community Rolling Action Plan (CoRAP)
for suspected reproductive toxicity and possible endocrine disruption [29]. However, the
structural similarity and physicochemical properties with BPA make the safety of these
analogues questionable, especially since a growing number of studies show that some of
them have similar or even higher toxic potential in terms of endocrine disrupting activity
and reproductive toxicity than BPA [17,36,42–44]. They also have adverse genotoxic effects
by inducing DNA strand breaks, impairing cell proliferation and cell cycle, altering the
expression of genes involved in DNA damage response and repair, and causing many other
changes in cell function [17,36,42,44,45].

A number of human biomonitoring studies have shown that the general population,
including children, is often exposed to chemical mixtures present in the environment, food,
and consumer products, rather than to a single compound [9]. Furthermore, exposure
to bisphenols such as BPA rarely occurs in a single compound but rather through co-
exposure to multiple bisphenols [46]. While the health effects of individual chemicals have
been studied in detail, there are growing concerns about the potential health effects of
co-exposure to multiple chemicals. However, regulatory requirements for mixtures are
scarce, except for intentional mixtures such as formulated products and pharmaceuticals [9].
In addition, exposure to several chemicals can have combined effects, including additive or
synergistic and ever-potentiating health effects. Given that various BP analogues coexist
with BPA, it is important to understand the mechanisms and consequences of co-exposure
to multiple analogues, preferably at environmentally relevant concentrations. Therefore,
more research is needed to fully understand the health effects of co-exposure to bisphenols
and to identify ways to mitigate these exposures.
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The present study investigated the potential cytotoxicity and induction of oxidative
stress caused by BPA, BPAP, and BPC as single compounds or binary BPA/BPAP and
BPA/BPC mixtures. BPAP and BPC were selected based on their occurrence in food-
stuffs [36,47], human samples [48], and the structural diversity of their chemical formula.
Their adverse effects were studied in in vitro 3D cell model (also called spheroids) formed
from human hepatocellular carcinoma (HepG2) cells. In recent years, 3D cell models have
gained popularity as preclinical test systems due to their enhanced metabolic, structural,
and physiological properties compared to traditional 2D cell models, which do not ade-
quately mimic the natural cell microenvironment represented by surrounding extracellular
matrix and nearby cells [49–56]. The advantages of 3D cell models include their ability to
grow undisturbed over longer periods, allowing for prolonged exposure to compounds,
and making them suitable for chronic repeated dose studies [53,54,57,58]. They can also
provide more predictive data for human exposure compared to classically cultured immor-
tal hepatic cell lines [59,60]. Here, the spheroids were exposed to single bisphenols (BPA,
BPAP and BPC) and binary combinations of BPA/BPAP and BPA/BPC for 24 and 96 h. The
impact on spheroid growth, cell viability, and oxidative stress was evaluated (Figure 1).
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Figure 1. Schematic overview of the research process. Spheroids were formed from HepG2 single-cell
suspension with an initial density of 3000 cells/spheroid using the forced floating method. After
three days of culturing, spheroids were exposed to BPA, BPAP, BPC and their binary mixtures for 24
and 96 h. Various end-points were then measured, including planimetry, cell viability, and oxidative
stress induction. The figure was made in BioRender program.

2. Results and Discussion

BPA has become a significant concern worldwide due to its harmful effects on human
health. These potential health effects have led to the increasing use of alternative bisphenols
such as BPAP, BPC and many others. Due to the expected increase in the use of BPA
analogues, exposure will also increase, and human co-exposure to these substances is
inevitable. Unfortunately, not much is known about their toxicity, and there is a lack of
information about their adverse effects, especially chronic exposure, and the combined
effects of BPs. Therefore, this should be a priority for further investigation as there is
insufficient information in the literature on co-exposure of BPs concerning their toxicity
and mechanism of action. Human health risk assessment is still performed on data of
individual compounds [31,61] where co-exposure to BPA with other BPs is not considered
in the risk assessment. However, co-exposures to multiple BPs should not be neglected.
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Interactions between chemicals can occur, leading to additive, synergistic, or potentiating
effects that may have more severe adverse health effects than individual compounds.

Therefore, this study investigated the effects of BPA, BPAP, and BPC as single com-
pounds and their complex mixtures on metabolically competent HepG2 spheroids (See
Table 1). The study evaluated the impact of these BPs on growth, average surface area, cell
viability, and oxidative stress production. To obtain more relevant information on human
exposure, we utilized in vitro 3D cell models, which are currently gaining importance in
toxicological studies [51,52,55]. These models offer several advantages over traditional
monolayer cell models, such as a higher level of liver-specific functions, including the
activities of metabolic enzymes [55], direct cell-cell and cell-extracellular matrix interac-
tions [59,62,63], and the cell morphology as well as their biochemical properties, more
closely resemble the in vivo microenvironment. They also allow long-term, repeated dose
studies that better reflect real human exposure scenarios [64]. To our knowledge, this is the
first study to examine the combined effects of selected BPs in 3D cell models.

The effect of BPA, BPAP, BPC, and their combinations on the viability of cells in
3-day-old HepG2 spheroids was evaluated using the MTS assay after short-term (24 h)
and long-term exposure (96 h) (for concentrations, see Table 2). The results showed that
BPA at applied concentrations (up to 80 µM and 8 µM, respectively) did not affect cell
viability after 24- or 96-h exposure (Figure 2). On the contrary, BPAP and BPC affected
cell viability after 24-h exposure (Figure 2A). BPAP at 20 µM significantly reduced cell
viability by 32 ± 6.7% compared to the solvent control, while no reduction in cell viability
was observed at higher concentrations. At 80 µM, mitochondrial dehydrogenase enzyme
activity increased significantly by 19.6 ± 6.7%, suggesting stress-induced changes in cells
as a response to the harmful effects of BPAP. BPC significantly reduced cell viability in a
dose-dependent manner at ≥40 µM (Figure 2A). Similar findings for BPAP were reported
by Sendra et al. [20], who observed an increase in cell viability of HepG2 spheroids after
24-h exposure to 20 µM BPAP. In the same study BPC at ≥20 µM reduced cell viability
after 24-h exposure, but the reduction was not statistically significant. Previously BPA
was reported to increase cell viability in HepG2 monolayer culture (1 and 10 µM) [65],
suggesting that the observed increase of mitochondrial dehydrogenase enzyme activity
is a sign of toxicity. In monolayer HepG2 cell cultures, BPA did not affect cell viability at
concentrations up to 80 µM after 24 h exposure [17,44]. At concentrations greater than
200 µM, Ozyurt et al. [66], reported that BPA can cause a concentration-dependent decrease
in HepG2 cell viability, while Yu et al. [67] reported cytotoxicity at concentrations as low as
10 µM. Several studies reported that BPA analogues could have higher cytotoxic potential
in mammalian cell lines than BPA [44,68–70]. Padberg et al. showed that BPC is more toxic
than BPA in the HepG2 cell line [71].

There is limited information on the cytotoxicity of co-exposure to BPA and its ana-
logues used in industry. Therefore, in our study, we investigated the effect of binary
mixtures, namely a combination of BPA and BPAP and a combination of BPA and BPC,
on HepG2 spheroids at concentrations 10 + 10, 20 + 20, 40 + 40 µM and 1 + 1, 2 + 2,
4 + 4 µM after 24 and 96 h of exposure, respectively (Figure 2A,B). Both mixtures at the
highest concentrations tested decreased cell viability. The BPA/BPAP combination at a
concentration of 40 + 40 µM decreased cell viability by 15 ± 7.1% after 24 h, while after 96 h
of exposure, cell viability was statistically significantly decreased by 23 ± 6.9%, even at
10-fold lower concentrations. Similarly, the BPA/BPC combination at 40 + 40 µM decreased
cell viability by 22 ± 7.1% after 24 h of exposure but had no effect after 96 h. The binary
mixtures decreased HepG2 cell viability to a similar extent as the single compounds, except
for the BPA/BPAP combination at 4 + 4 µM after 96 h exposure. Both BPs at 4 and 8 µM
did not affect cell viability, whereas the combination statistically significantly decreased cell
viability by 23%. Similarly, Skledar and Mašič [72] observed no cytotoxic effect of BPA and
BPC and their combinations at concentrations up to 25 µM on the ERα-Hela 9903 cell line.
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Figure 2. Viability of cells in HepG2 spheroids (MTS assay) after 24 h (A) and 96 h (B) exposure
to BPA, BPAP, BPC and their binary mixtures. PC—positive control (15% DMSO). * significantly
different from solvent control, * p < 0.05; *** p < 0.001; **** p > 0.0001 (one-way ANOVA; Dunnett’s
multiple comparison test).

There are almost no publications available in the literature addressing mechanisms of
toxicity due to co-exposure to multiple BP analogues or BP analogues together with other
environmental toxins. Most of the available toxicity studies have evaluated the effects of a
single BP [17,20,44]. However, it is extremely important to consider potential additive or
synergistic effects caused by a mixture of BPs analogues when studying the mechanisms of
action and assessing human health risks.

We further investigated the impact of BPA, BPAP and BPC and their binary mixtures
on the growth, size, and average surface area of HepG2 spheroids over 24 (Figure 3A–D)
and 96 (Figure 3E–H) hours of exposure. Using a planimetry approach, we found that
the BPs and their binary mixtures at the concentrations applied did not affect the size
and average surface area of HepG2 spheroids up to 96 h of exposure compared to solvent
control. The BP-exposed spheroids grew to a similar extent as spheroids exposed to the
solvent control (Figure 3 and Tables S1 and S2). The positive control, 15% DMSO, decreased
the average surface area by 10 ± 20.7% after 96 h of exposure, compared to the starting
average surface area (set as 100%). In addition, light microscopy analysis revealed no
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changes in the roundness, size, shape, or compactness of the spheroids after 24 and 96 h of
exposure to BPs and their binary mixtures compared to the solvent control, except for the
positive control after 96 h of exposure (Figures S1 and S2). To date, only a few studies have
investigated the effects of BPA and its analogues on growth, compactness, and surface area,
and these have been conducted on traditional 2D monolayer cultures [73–75]. The results
of the only published study in a 3D HepG2 cell model [20] show no significant changes in
the average surface area after 24 h of exposure to single BPA, BPAP, and BPC compounds
compared to the average surface area of the solvent control. In addition, concentrations up
to 80 µM of BPs studied did not affect the average surface area of spheroids after prolonged
exposure (96 h).
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Figure 3. Planimetry measurements of spheroids (3-day old) before treatment (0) and after 24 and
96-h treatment with BPA, BPAP, BPC (A–C,E–G) and their binary mixtures (D,H). (A–D) Figures
show the change in % of the average spheroid area after 24 h of exposure compared to the average
area at the beginning of treatment. (E–H) Figures show the change in % of the average spheroid area
after 24 h and 96 h of exposure compared to the average area of the 72-h old spheroid. The growth of
spheroids was monitored at 4×magnification. 15% DMSO served as a positive control (PC). Results
are presented as mean ± SD (N = 10) of three biologically independent experiments. * different from
solvent control, **** p < 0.0001 (one-way ANOVA; Dunnett’s multiple comparison test).
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Oxidative stress is a common condition believed to majorly impact cancer develop-
ment [76,77]. Normally, cells produce a small amount of reactive oxygen species (ROS),
which are beneficial for their effects on the redox state of cells and play an important
role in the signalling cascade [78]. However, excess ROS can cause oxidative stress and
damage lipids, proteins, and cell membranes, leading to structural and functional disrup-
tion of cells [79]. Several literature data link BPA to elevated oxidative stress [66,80,81],
and some studies have shown that BPs analogues such as BPF, BPS, BPAF, and BPB can
induce oxidative stress in liver cells and other cell lines [42,66,82–87]. However, no data are
available for BPAP and BPAC and combined effects with BPA. In this study, we used for
the first time HepG2 spheroids to investigate the induction of oxidative stress by the BPs
studied. In addition, the thiobarbituric acid assay (TBA) was used to measure the content
of malondialdehyde (MDA), a biomarker of lipid peroxidation that reflects the extent of
oxidative damage to cells [88–90], and the dihydroethidium (DHE) fluorescent probe was
used to evaluate changes in intracellular ROS levels after exposure to BPA, BPAP, BPC, and
their binary mixtures.

The results showed that MDA levels were significantly elevated in spheroids exposed
to BPA for 24 h at 20 (3.57 ± 0.42 µM/mg of protein) and 40 µM (3.64 ± 0.17 µM/mg
of protein), compared to the solvent control (3.08 ± 0.20 µM/mg of protein) (Figure 4A).
Increased MDA levels after 24-h exposure were observed in spheroids exposed to 40 µM
BPC (3.90 ± 0.49 µM/mg of protein) but not for BPAP and binary mixtures at applied
conditions. After 96 h of exposure of spheroids to BPA, the content of MDA was significantly
elevated at 2 (3.76 ± 0.24 µM/mg of protein) and 4 µM (4.17 ± 0.31 µM/mg of protein),
compared to the solvent control (3.17 ± 0.08 µM/mg of protein) (Figure 4B). A significant
increase of MDA was also induced by BPAP at 4 µM (4.04 ± 0.18 µM/mg of protein)
and BPC at 4 µM (3.94 ± 0.24 µM/mg of protein). On the contrary, binary mixtures
(BPA/BPAP and BPA/BPC) did not have a statistically significant effect on MDA levels
compared to the solvent control, which suggests an antagonistic effect. Positive control
(0.7 µM Luperox® TBH70X) significantly induce the formation of MDA by approximately
2.3 (8.02 ± 2.07 µM/mg of protein) and 3.97-fold change (13.12 ± 5.3) µM/mg of protein)
after 24 and 96 h of exposure, respectively, compared to solvent control. In contrast to our
results, Ozyurt et al. [66] showed that BPA at 397 µM (IC30 concentration) did not affect
MDA levels in HepG2 monolayers after 24 h of exposure. However, they showed that a
high dose of BPA increased free radical formation and decreased the ability to detoxify ROS.

An increase in intracellular ROS causes oxidative stress and damage to organelles
and cellular macromolecules [66]. The present study assessed changes in intracellular
ROS levels following exposure to BPA, BPAP, BPC, and their binary mixtures using the
fluorescent dihydroethidium (DHE) probe. The results showed that all three bisphenols
significantly increased the intracellular ROS levels in HepG2 spheroids in a dose-dependent
manner after short and prolonged exposure times (Figure 4C,D). BPA induced a significant
increase in ROS production at 20 and 40 µM by 13 ± 5.27% and 41 ± 4.58% compared to
solvent control (set at 100%) after 24 h of exposure (Figure 4C). Similarly, also BPAP at 20
and 40 µM resulted in 11 ± 3.57% and 38 ± 3.90%, while BPC was the least potent and
induced a significant increase in ROS formation only at the highest concentration tested at
40 µM by 23 ± 2.97%. The induction of ROS formation was also observed at the highest
tested concentration of both binary mixtures (20 + 20 µM), BPA/BPAP (by 29 ± 2.43%) and
BPA/BPC (by 25 ± 3.31) again being less potent. After 96 h of exposure, BPA increased
ROS formation at 2 and 4 µM by 16 ± 1.39% and 42 ± 3.51%, respectively, compared to
the solvent control (Figure 4D). Similarly, BPAP elevated ROS production at 2 and 4 µM
by 18 ± 6.36% and 38 ± 6.38%. The lowest induction of ROS was caused by BPC, only
at 4 µM by 21 ± 3.05%. The binary mixtures (2 + 2 µM) of BPA/BPAP and BPA/BPC
increased ROS levels by 28 ± 3.05% and 20 ± 1.11%, respectively, where the combination
BPA/BPC was less potent than BPA/BPAP (Figure 4C,D). Positive control significantly
induced ROS formation by 78 ± 21.4% and 184 ± 22.8% after 24 and 96 h of exposure,
respectively, compared to the solvent control.
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Overall, these results indicate that all investigated bisphenols and their binary mixtures
caused oxidative stress in HepG2 spheroids, with BPC being the least potent, while BPA and
BPAP induced oxidative stress to a similar extent. The findings align with previous studies
on HepG2 monolayer cultures, which showed that a high dose of BPA (397 µM) and other
analogues could increase free radical formation after 24 h of exposure [66]. In addition, BPA
has been shown to induce MDA content and ROS formation in several cell types in vitro
at concentrations ranging from nanomolar to micromolar [64,87,91–97]. Similarly, ROS
induction has been reported for several BPA analogues, including BPS, BPF and BPAF in
human peripheral blood mononuclear cells [83,87] and human erythrocytes [71]. However,
for BPAP and BPC, particularly their mixtures, limited data are available on the induction
of oxidative stress. BPAP and BPC have been described to induce ROS formation in IMR-32
cells [98] and BPC also in MCF-7 cells [99].

The findings suggest that exposure to BPA, BPAP, BPC, and their mixtures can increase
cellular oxidative stress. In addition, the increased formation of ROS can lead to the induc-
tion of DNA damage. Previously, it was reported that all three bisphenols studied induced
increased formation of DNA single-strand breaks in HepG2 spheroids as determined by the
comet assay, with BPAP being the most effective [20]. To fully understand the mechanisms
and the potential health risks associated with exposure to these chemicals, further research
is needed.
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3. Materials and Methods
3.1. Chemicals and Preparation of Bisphenol Standard Solution

Bisphenol A (4,4’-(propane-2,2-diyl)diphenol; BPA), Bisphenol AP (4,4′-(1-Phenyleth
ylidene)bisphenol; BPAP), Bisphenol C (4,4’-(2,2-dichloroethene-1,1-diyl)diphenol; BPC),
Penicillin/streptomycin, Na-pyruvate, L-glutamine, Dimethylsulphoxide (DMSO), Bovine
Serum Albumin (BSA), Coomassie Brilliant Blue G-259, Thiobarbituric acid (TBA), Dihy-
droethidium (DHE), and Methylcellulose were obtained from Sigma-Aldrich (St. Louis,
MO, USA). Minimum essential medium eagle (MEME-10370-047), Trypsin-EDTA (0.25%),
TripLE Express (12604-013), Foetal bovine serum (FBS) and Trypan Blue (15250-061) were
obtained from Gibco (Praisley, Scotland, UK). Etoposide (ET) was from Santa Cruz Biotech-
nology (St. Cruz, CA, USA). Phosphate buffered saline (PBS) was purchased from PAA
Laboratories (Dartmouth, NH, USA). Collagenase (Type I- 17018029) was obtained from
Fisher Sciences (Branchburg, NJ, USA). CellTiter 96® AQueous cell proliferation assay
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; MTS) was obtained from
Promega (Madison, WI, USA). Phosphoric acid (H3PO4) was from Merck (Darmstadt,
Germany). Luperox® TBH70X (0.7 mM)- tert-Butyl hydroperoxide was obtained from
Aldrich Chemistry (USA).

Standard stock solutions of BPA (16 mM), BPAP (16 mM) and BPC (16 mM) were
prepared in DMSO and stored at −20 ◦C, and dilutions for cell treatment were prepared in
cell medium each time fresh before treatment. The final concentration of DMSO in BPs solu-
tions for cell treatment did not exceed 0.3%. In treatment concentrations, the concentration
of DMSO was adjusted to 0.3% and 0.06% for 24 h and 96 h exposures, respectively.

Table 1. UPAC name, CAS N◦, structural formulas, the molecular mass of BPA, and its analogues
BPAP and BPC.

Compound Name IUPAC Name CAS No Structural Formula Molecular Weight [g/mol]

Bisphenol A 2,2-bis(4-
hydroxyphenyl)propane 80-05-07
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3.2. Cell Culture and Formation of In Vitro 3D Cell Model

The human hepatocellular carcinoma (HepG2) cell line was obtained from the ATCC
cell bank (ATCC-HB-8065™, Manassas, VA, USA). Cells were grown in MEME medium
containing NEAA supplemented with 10% FBS, 2.2 g/L NaHCO3, 2 mM L-glutamine,
100 IU/mL penicillin/streptomycin, and 1 mM sodium pyruvate at 37 ◦C in a humidified
atmosphere with 5% CO2. For the experiments, 3D cell models (spheroids) were formed
from single-cell suspension using the forced floating method described by Štampar et al.
(2019) [56]. Spheroids with an initial cell density of 3000 cells per spheroid were seeded
onto 96-well plates and were grown for three days before treatment.

3.3. Preparation of Complex BPs Mixtures and Treatment Conditions

After three days of culture, the growth medium was removed, and the spheroids
were exposed to the following bisphenols: BPA, BPAP, and BPC as single compounds (BPs;
Table 1) and their binary mixtures in a 1:1 ratio (BPA + BPAP; BPA + BPC) for 24 h and
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96 h. For the 96-h exposure, the medium was replaced after 48 h of treatment with a fresh
medium containing the same concentration of BPs (Table 2). A solvent control (SC) and
appropriate positive controls (PC) were used in all experiments.

Table 2. Treatment conditions and selected concentration for the experiments.

Time of Exposure Single Compound or Binary Mixture Concentrations

24 h
BPA, BPAP, BPC 10 µM, 20 µM, 40 µM, 80 µM

BPA + BPAP/BPC 10 + 10 µM, 20 + 20 µM, 40 + 40 µM

96 h
BPA, BPAP, BPC 1 µM, 2 µM, 4 µM, 8 µM

BPA + BPAP/BPC 1 + 1 µM, 2 + 2 µM, 4 + 4 µM

3.4. Cytotoxicity—The MTS Assay

The cytotoxicity of BPA, BPC, BPAP and their binary mixture was assessed using the
tetrazolium-based (MTS) assay according to the manufacturer’s instructions (Promega) with
minor modifications [44,56]. Three-day-old spheroids were exposed to single compounds
BPA, BPC, and BPAP at concentrations of 10 µM, 20 µM, 40 µM, and 80 µM and 1 µM, 2 µM,
4 µM, and 8 µM for 24 and 96 h, respectively, and their combinations at concentrations
of 10 + 10 µM, 20 + 20 µM, and 40 + 40 µM and 1 + 1 µM, 2 + 2 µM, and 4 + 4 µM for 24
and 96 h, respectively (see Table 2). At the end of the treatment period (after 24 or 96 h),
20% of a freshly prepared mixture of MTS: PMS solution (20:1) was added to each well and
incubated for 3 h. After incubation, absorbance was measured at 490 nm using a microplate
reader (Sinergy MX, BioTek, Winooski, VT, USA). The experiment was performed with five
replicates per treatment point and repeated in three independent biological replicates. Each
experiment included a negative control (cell medium), a solvent control (cells exposed to
0.3% and 0.06% DMSO for 24 and 96 h, respectively), and a positive control (15% DMSO).

Significant differences in cell viability between the treated groups and the solvent con-
trol group were analyzed using a One-Way Analysis of Variance (ANOVA) and Dunnett’s
multiple comparison test using GraphPad Prism V8 (GraphPad Software, San Diego, CA,
USA). [p < 0.05 (*), p < 0.001 (**), p < 0.0001 (***) were considered statistically significant].

3.5. Planimetry—The Effects on the Average Surface Area

Surface area measurements (µm2) and micrographs of at least five spheroids per treat-
ment point were recorded from day three (immediately before the BP treatment = time 0)
and after 24 and 96 h of post-treatment. Spheroids were exposed to single compounds at
concentrations 10, 20, 40, and 80 µM and 1, 2, 4, and 8 µM for 24 and 96 h, respectively,
and their combinations at concentrations of 10 + 10 µM, 20 + 20 µM, and 40 + 40 µM and
1 + 1 µM, 2 + 2 µM, and 4 + 4 µM for 24 and 96 h, respectively (see Table 2). Average
surface area measurements and micrographs were captured using Cytation 5 (BioTek,
Winooski, VT, USA) with a built-in microscope and a wide-angle-view camera at 4×mag-
nification, and analysis was performed using the Gen5 program (Software for imaging
and microscopy, BioTek, USA, version 3.11). Experiments were repeated three times in
independent biological replicates.

In each experiment, a negative control (cell medium), solvent control (cells exposed to
0.3% and 0.06% DMSO for 24 and 96 h, respectively), and positive control (15% DMSO) were
included. Graphical and statistical analyses were performed using GraphPad 8 software
by one-way analysis of variance (ANOVA) test with a Dunnett post hoc [p < 0.05 (*),
p < 0.001 (**), p < 0.0001 (***) were considered statistically significant].

3.6. Oxidative Stress—The MDA Assay and ROS Production

Three-day-old spheroids were exposed to single compounds BPA, BPC, and BPAP at
concentrations 10, 20 and 40 µM and 1, 2 and 4 µM for 24 and 96 h, respectively, and their
binary mixtures at concentrations of 10 + 10 µM and 20 + 20 µM, and 1 + 1 µM and 2 + 2 µM
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for 24 and 96 h, respectively (see Table 2). Before measuring oxidative stress parameters,
24 spheroids were collected for each sample in a 5 mL Eppendorf tube. After collection,
the spheroids were centrifuged at 188 g for 4 min, washed with 1 mL PBS and stored in
500 µL PBS at −80 ◦C. Protein content, malondialdehyde (MDA), and reactive oxygen
species (ROS) production were determined in the collected samples. The experiments were
performed in three independent biological replicates. Each experiment included a negative
control (cell medium), a solvent control (cells exposed to 0.3% and 0.06% DMSO for 24 and
96 h, respectively), and a positive control (Luperox® TBH70X (0.7 µM)).

3.6.1. Determination of MDA Level

Malondialdehyde (MDA) is one of the end products of the peroxidation of polyunsat-
urated fatty acids in cells. An increase in free radicals leads to an overproduction of MDA.
Measurement of the MDA level in the collected samples was performed using the TBA
assay previously described by Domijan et al. [90] with minor modifications. First, a reagent
(0.6% TBA in 1% H3PO4) was prepared. Spheroids stored in PBS were homogenized in
ice-cold conditions and then centrifuged at 10,000× g for 8 min. 50 µL of the supernatant
was added to 100 µL of the reagent. The samples were mixed and incubated for 30 min
in a thermostatic block at 90 ◦C. To stop the reaction, the samples were placed on ice.
100 µL of the reaction mixture was transferred to 96-well microtiter plates, and absorbance
was read at 532 nm (SpectraMax i3x, Molecular Devices, San Jose, CA, USA). The MDA
concentration was calculated based on the Beer-Lambert law and the absorption coefficient
of MDA (156 mM−1 cm−1). As the number of cells in the spheroids can vary, affecting the
MDA level, the MDA concentration was normalized based on the protein level in the same
sample. The protein level in the supernatant was determined according to Bradford [100].
The absorbance of the reaction mixture was read on a microplate reader (SpectraMax i3x,
Molecular Devices, San Jose, CA, USA) at 595 nm. The protein concentration was quantified
using a calibration curve prepared from BSA standards (Table S3).

Significant differences between the treated and solvent control groups were analysed
by One-way analysis of variance (ANOVA) and Dunnett’s multiple comparison test using
GraphPad Prism V8 (GraphPad Software, San Diego, CA, USA). [p < 0.05 (*), p < 0.001 (**),
p < 0.0001 (***) were considered statistically significant].

3.6.2. Determination of ROS Production

The level of intracellular ROS production in HepG2 spheroids after BP treatment was
determined using fluorescent probe DHE as described in Gajski et al. [101]. DHE is a
membrane-permeable compound oxidized mainly by the superoxide radical (O2-) to the
red fluorescent ethidium (DNA-binding membrane-impermeable compound). Hence, an
increase in red fluorescence indicates an increase in the superoxide radical. Therefore,
50 µL of the previously obtained sample supernatant was transferred to a black 96-well
microtiter plate, followed by the addition of 50 µL of DHE (10 µM). Fluorescence intensity
was measured using a microplate reader set at λex 535 nm and λem 635 nm (SpectraMax i3x,
Molecular Devices, San Jose, CA, USA). In addition, 50 µL of deionized H2O was used as a
reference measurement (blank), which was treated the same way as the samples.

Significant differences between the treated and solvent control groups were analysed
by one-way analysis of variance (ANOVA) and Dunnett’s multiple comparison test using
GraphPad Prism V8 (GraphPad Software, San Diego, CA, USA). [p < 0.05 (*), p < 0.001 (**),
p < 0.0001 (***) were considered statistically significant].

4. Conclusions

The present study investigated the toxic effects of BPA, BPAP, BPC, and binary mixtures
of BPA/BPAP and BPA/BPC in an in vitro 3D HepG2 cell model. The results showed that
BPA did not affect cell viability under the applied conditions. In contrast, after short-term
exposure, BPAP and BPC and the binary mixtures (BPA/BPAP and BPA/BPC) decreased
cell viability in the HepG2 3D cell model. None of the bisphenols studied affected cell



Molecules 2023, 28, 3085 12 of 16

viability after prolonged exposure, except for the BPA/BPAP binary mixture. In addition,
none of the bisphenols and their binary mixtures studied affected spheroids’ compactness,
size, surface area, and growth. All three bisphenols and their binary mixtures induced
increased MDA and ROS levels, with BPC being the least effective. Overall, the results of
the present study indicate that BPA and its analogues, BPAP and BPC, induce oxidative
stress, which is involved in their toxic activity. However, further research is needed to fully
understand the mechanisms and potential health risks associated with exposure to the
studied bisphenols. It is important to investigate the effects of complex mixtures, as the
combined effects may differ from those induced by single compounds.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28073085/s1. Data showing the impact on the growth
of spheroids, Figures showing the impact on the growth of spheroids and Data on protein concentra-
tion (mg/mL).
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