Naslov: | Commutators greater than a perturbation of the identity |
---|
Avtorji: | ID Drnovšek, Roman (Avtor) ID Kandić, Marko (Avtor) |
Datoteke: | PDF - Predstavitvena datoteka, prenos (326,77 KB) MD5: 611225E70FCA0B0EA2CB44B815D522F0
URL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0022247X24006358
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
---|
Povzetek: | Let $a$ and $b$ be elements of an ordered normed algebra ${\mathcal A}$ with unit $e$. Suppose that the element $a$ is positive and that for some $\varepsilon > 0$ there exists an element $x\in {\mathcal A}$ with $\|x\|\leq \varepsilon$ such that $ab-ba \geq e+x$. If the norm on ${\mathcal A}$ is monotone, then we show $\|a\|\cdot \|b\|\geq \tfrac{1}{2} \ln \tfrac{1}{\varepsilon}$, which can be viewed as an order analog of Popa's quantitative result for commutators of operators on Hilbert spaces. We also give a relevant example of positive operators $A$ and $B$ on the Hilbert lattice $\ell^2$ such that their commutator $A B - B A$ is greater than an arbitrarily small perturbation of the identity operator. |
---|
Ključne besede: | Banach lattices, positive operators, commutators, ordered normed algebras |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 01.01.2025 |
---|
Leto izida: | 2025 |
---|
Št. strani: | 11 str. |
---|
Številčenje: | Vol. 541, iss. 2, [article no.] 128713 |
---|
PID: | 20.500.12556/DiRROS-20458 |
---|
UDK: | 517.983 |
---|
ISSN pri članku: | 0022-247X |
---|
DOI: | 10.1016/j.jmaa.2024.128713 |
---|
COBISS.SI-ID: | 208157699 |
---|
Opomba: |
|
---|
Datum objave v DiRROS: | 19.09.2024 |
---|
Število ogledov: | 185 |
---|
Število prenosov: | 112 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |