Title: | Commutators greater than a perturbation of the identity |
---|
Authors: | ID Drnovšek, Roman (Author) ID Kandić, Marko (Author) |
Files: | PDF - Presentation file, download (326,77 KB) MD5: 611225E70FCA0B0EA2CB44B815D522F0
URL - Source URL, visit https://www.sciencedirect.com/science/article/pii/S0022247X24006358
|
---|
Language: | English |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
---|
Abstract: | Let $a$ and $b$ be elements of an ordered normed algebra ${\mathcal A}$ with unit $e$. Suppose that the element $a$ is positive and that for some $\varepsilon > 0$ there exists an element $x\in {\mathcal A}$ with $\|x\|\leq \varepsilon$ such that $ab-ba \geq e+x$. If the norm on ${\mathcal A}$ is monotone, then we show $\|a\|\cdot \|b\|\geq \tfrac{1}{2} \ln \tfrac{1}{\varepsilon}$, which can be viewed as an order analog of Popa's quantitative result for commutators of operators on Hilbert spaces. We also give a relevant example of positive operators $A$ and $B$ on the Hilbert lattice $\ell^2$ such that their commutator $A B - B A$ is greater than an arbitrarily small perturbation of the identity operator. |
---|
Keywords: | Banach lattices, positive operators, commutators, ordered normed algebras |
---|
Publication status: | Published |
---|
Publication version: | Version of Record |
---|
Publication date: | 01.01.2025 |
---|
Year of publishing: | 2025 |
---|
Number of pages: | 11 str. |
---|
Numbering: | Vol. 541, iss. 2, [article no.] 128713 |
---|
PID: | 20.500.12556/DiRROS-20458 |
---|
UDC: | 517.983 |
---|
ISSN on article: | 0022-247X |
---|
DOI: | 10.1016/j.jmaa.2024.128713 |
---|
COBISS.SI-ID: | 208157699 |
---|
Note: |
|
---|
Publication date in DiRROS: | 19.09.2024 |
---|
Views: | 188 |
---|
Downloads: | 115 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |