Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Identification of women with high grade histopathology results after conisation by artificial neural networks
Avtorji:ID Mlinarič, Marko (Avtor)
ID Križmarić, Miljenko (Avtor)
ID Takač, Iztok (Avtor)
ID Repše-Fokter, Alenka (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://sciendo.com/article/10.2478/raon-2022-0023
 
.pdf PDF - Predstavitvena datoteka, prenos (663,31 KB)
MD5: 9E50E559F3FCAA0025A371436A677E1F
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo OI - Onkološki inštitut Ljubljana
Povzetek:Background: The aim of the study was to evaluate if artificial neural networks can predict high-grade histopathology results after conisation from risk factors and their combinations in patients undergoing conisation because of pathological changes on uterine cervix. Patients and methods: We analysed 1475 patients who had conisation surgery at the University Clinic for Gynaecology and Obstetrics of University Clinical Centre Maribor from 1993-2005. The database in different datasets was arranged to deal with unbalance data and enhance classification performance. Weka open-source software was used for analysis with artificial neural networks. Last Papanicolaou smear (PAP) and risk factors for development of cervical dysplasia and carcinoma were used as input and high-grade dysplasia Yes/No as output result. 10-fold cross validation was used for defining training and holdout set for analysis. Results: Baseline classification and multiple runs of artificial neural network on various risk factors settings were performed. We achieved 84.19% correct classifications, area under the curve 0.87, kappa 0.64, F-measure 0.884 and Matthews correlation coefficient (MCC) 0.640 in model, where baseline prediction was 69.79%. Conclusions: With artificial neural networks we were able to identify more patients who developed high-grade squamous intraepithelial lesion on final histopathology result of conisation as with baseline prediction. But, characteristics of 1475 patients who had conisation in years 1993-2005 at the University Clinical Centre Maribor did not allow reliable prediction with artificial neural networks for every-day clinical practice.
Ključne besede:artificial neural networks, conisation, uterine cervical cancer, uterine cervical dysplasia, displazija materničnega vratu, rak materničnega vratu, konizacija, umetne nevronske mreže
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum objave:01.01.2022
Založnik:Association of Radiology and Oncology
Leto izida:2022
Št. strani:str. 355-364
Številčenje:Vol. 56, iss. 3
Izvor:Ljubljana
PID:20.500.12556/DiRROS-19765 Novo okno
UDK:618.146-006-07
ISSN pri članku:1318-2099
DOI:10.2478/raon-2022-0023 Novo okno
COBISS.SI-ID:115112451 Novo okno
Avtorske pravice:by Authors
Opomba:Soavtorji: Miljenko Krizmaric, Iztok Takac, Alenka Repse Fokter;
Datum objave v DiRROS:24.07.2024
Število ogledov:328
Število prenosov:210
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Radiology and oncology
Skrajšan naslov:Radiol. oncol.
Založnik:Slovenian Medical Society - Section of Radiology, Croatian Medical Association - Croatian Society of Radiology
ISSN:1318-2099
COBISS.SI-ID:32649472 Novo okno

Nazaj