Naslov: | Identification of women with high grade histopathology results after conisation by artificial neural networks |
---|
Avtorji: | ID Mlinarič, Marko (Avtor) ID Križmarić, Miljenko (Avtor) ID Takač, Iztok (Avtor) ID Repše-Fokter, Alenka (Avtor) |
Datoteke: | URL - Izvorni URL, za dostop obiščite https://sciendo.com/article/10.2478/raon-2022-0023
PDF - Predstavitvena datoteka, prenos (663,31 KB) MD5: 9E50E559F3FCAA0025A371436A677E1F
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | OI - Onkološki inštitut Ljubljana
|
---|
Povzetek: | Background: The aim of the study was to evaluate if artificial neural networks can predict high-grade histopathology results after conisation from risk factors and their combinations in patients undergoing conisation because of pathological changes on uterine cervix. Patients and methods: We analysed 1475 patients who had conisation surgery at the University Clinic for Gynaecology and Obstetrics of University Clinical Centre Maribor from 1993-2005. The database in different datasets was arranged to deal with unbalance data and enhance classification performance. Weka open-source software was used for analysis with artificial neural networks. Last Papanicolaou smear (PAP) and risk factors for development of cervical dysplasia and carcinoma were used as input and high-grade dysplasia Yes/No as output result. 10-fold cross validation was used for defining training and holdout set for analysis. Results: Baseline classification and multiple runs of artificial neural network on various risk factors settings were performed. We achieved 84.19% correct classifications, area under the curve 0.87, kappa 0.64, F-measure 0.884 and Matthews correlation coefficient (MCC) 0.640 in model, where baseline prediction was 69.79%. Conclusions: With artificial neural networks we were able to identify more patients who developed high-grade squamous intraepithelial lesion on final histopathology result of conisation as with baseline prediction. But, characteristics of 1475 patients who had conisation in years 1993-2005 at the University Clinical Centre Maribor did not allow reliable prediction with artificial neural networks for every-day clinical practice. |
---|
Ključne besede: | artificial neural networks, conisation, uterine cervical cancer, uterine cervical dysplasia, displazija materničnega vratu, rak materničnega vratu, konizacija, umetne nevronske mreže |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 01.01.2022 |
---|
Založnik: | Association of Radiology and Oncology |
---|
Leto izida: | 2022 |
---|
Št. strani: | str. 355-364 |
---|
Številčenje: | Vol. 56, iss. 3 |
---|
Izvor: | Ljubljana |
---|
PID: | 20.500.12556/DiRROS-19765 |
---|
UDK: | 618.146-006-07 |
---|
ISSN pri članku: | 1318-2099 |
---|
DOI: | 10.2478/raon-2022-0023 |
---|
COBISS.SI-ID: | 115112451 |
---|
Avtorske pravice: | by Authors |
---|
Opomba: | Soavtorji: Miljenko Krizmaric, Iztok Takac, Alenka Repse Fokter;
|
---|
Datum objave v DiRROS: | 24.07.2024 |
---|
Število ogledov: | 333 |
---|
Število prenosov: | 212 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |