Naslov: | Domains without parabolic minimal submanifolds and weakly hyperbolic domains |
---|
Avtorji: | ID Forstnerič, Franc (Avtor) |
Datoteke: | PDF - Predstavitvena datoteka, prenos (242,50 KB) MD5: 968AF422A5EFB57D0AF9C573CD9E8476
URL - Izvorni URL, za dostop obiščite https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.12894
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
---|
Povzetek: | We show that if $\Omega$ is an $m$-convex domain in $\mathbb{R}^n$ for some $2 \le m < n$ whose boundary $b\Omega$ has a tubular neighbourhood of positive radius and is not $m$-flat near infinity, then $\Omega$ does not contain any immersed parabolic minimal submanifolds of dimension $\ge m$. In particular, if $M$ is a properly embedded non-flat minimal hypersurface in $\mathbb{R}^n$ with a tubular neighbourhood of positive radius, then every immersed parabolic hypersurface in $\mathbb{R}^n$ intersects $M$. In dimension $n=3$, this holds if $M$ has bounded Gaussian curvature function. We also introduce the class of weakly hyperbolic domains $\Omega$ in $\mathbb{R}^n$, characterised by the property that every conformal harmonic map $\mathbb{C} \to \Omega$ is constant, and we elucidate their relationship with hyperbolic domains, and domains without parabolic minimal surfaces. |
---|
Ključne besede: | minimal surfaces, m-plurisubharmonic functions, hyperbolic domain |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 01.12.2023 |
---|
Leto izida: | 2023 |
---|
Št. strani: | str. 2778-2792 |
---|
Številčenje: | Vol. 55, iss. 6 |
---|
PID: | 20.500.12556/DiRROS-18651 |
---|
UDK: | 517.5 |
---|
ISSN pri članku: | 0024-6093 |
---|
DOI: | 10.1112/blms.12894 |
---|
COBISS.SI-ID: | 161694467 |
---|
Opomba: |
|
---|
Datum objave v DiRROS: | 10.04.2024 |
---|
Število ogledov: | 857 |
---|
Število prenosov: | 561 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |