| Naslov: | Strong edge geodetic problem on complete multipartite graphs and some extremal graphs for the problem |
|---|
| Avtorji: | ID Klavžar, Sandi (Avtor) ID Zmazek, Eva (Avtor) |
| Datoteke: | URL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s41980-023-00849-6
PDF - Predstavitvena datoteka, prenos (430,75 KB) MD5: 9BE8331E3983B59A05BAFEBD3FB74015
|
|---|
| Jezik: | Angleški jezik |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
|---|
| Povzetek: | A set of vertices $X$ of a graph $G$ is a strong edge geodetic set if to any pair of vertices from $X$ we can assign one (or zero) shortest path between them such that every edge of $G$ is contained in at least one on these paths. The cardinality of a smallest strong edge geodetic set of $G$ is the strong edge geodetic number ${\rm sg_e}(G)$ of $G$. In this paper, the strong edge geodetic number of complete multipartite graphs is determined. Graphs $G$ with ${\rm sg_e}(G) = n(G)$ are characterized and ${\rm sg_e}$ is determined for Cartesian products $P_n\,\square\, K_m$. The latter result in particular corrects an error from the literature. |
|---|
| Ključne besede: | strong edge geodetic problem, complete multipartite graph, edge-coloring, Cartesian product of graphs |
|---|
| Status publikacije: | Objavljeno |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Datum objave: | 01.02.2024 |
|---|
| Leto izida: | 2024 |
|---|
| Št. strani: | 13 str. |
|---|
| Številčenje: | Vol. 50, iss. 1, article no. 13 |
|---|
| PID: | 20.500.12556/DiRROS-18207  |
|---|
| UDK: | 519.17 |
|---|
| ISSN pri članku: | 1018-6301 |
|---|
| DOI: | 10.1007/s41980-023-00849-6  |
|---|
| COBISS.SI-ID: | 183235331  |
|---|
| Opomba: |
|
|---|
| Datum objave v DiRROS: | 19.02.2024 |
|---|
| Število ogledov: | 1084 |
|---|
| Število prenosov: | 579 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |