Title: | Strong edge geodetic problem on complete multipartite graphs and some extremal graphs for the problem |
---|
Authors: | ID Klavžar, Sandi (Author) ID Zmazek, Eva (Author) |
Files: | URL - Source URL, visit https://link.springer.com/article/10.1007/s41980-023-00849-6
PDF - Presentation file, download (430,75 KB) MD5: 9BE8331E3983B59A05BAFEBD3FB74015
|
---|
Language: | English |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | IMFM - Institute of Mathematics, Physics, and Mechanics
|
---|
Abstract: | A set of vertices $X$ of a graph $G$ is a strong edge geodetic set if to any pair of vertices from $X$ we can assign one (or zero) shortest path between them such that every edge of $G$ is contained in at least one on these paths. The cardinality of a smallest strong edge geodetic set of $G$ is the strong edge geodetic number ${\rm sg_e}(G)$ of $G$. In this paper, the strong edge geodetic number of complete multipartite graphs is determined. Graphs $G$ with ${\rm sg_e}(G) = n(G)$ are characterized and ${\rm sg_e}$ is determined for Cartesian products $P_n\,\square\, K_m$. The latter result in particular corrects an error from the literature. |
---|
Keywords: | strong edge geodetic problem, complete multipartite graph, edge-coloring, Cartesian product of graphs |
---|
Publication status: | Published |
---|
Publication version: | Version of Record |
---|
Publication date: | 01.02.2024 |
---|
Year of publishing: | 2024 |
---|
Number of pages: | 13 str. |
---|
Numbering: | Vol. 50, iss. 1, article no. 13 |
---|
PID: | 20.500.12556/DiRROS-18207 |
---|
UDC: | 519.17 |
---|
ISSN on article: | 1018-6301 |
---|
DOI: | 10.1007/s41980-023-00849-6 |
---|
COBISS.SI-ID: | 183235331 |
---|
Note: |
|
---|
Publication date in DiRROS: | 19.02.2024 |
---|
Views: | 511 |
---|
Downloads: | 238 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |