Naslov: | On the influence of aging on classification performance in the visual EEG oddball paradigm using statistical and temporal features |
---|
Avtorji: | ID Omejc, Nina (Avtor) ID Peskar, Manca (Avtor) ID Miladinović, Aleksandar (Avtor) ID Kavcic, Voyko (Avtor) ID Džeroski, Sašo (Avtor) ID Marušič, Uroš (Avtor) |
Datoteke: | URL - Izvorni URL, za dostop obiščite https://doi.org/10.3390/life13020391
PDF - Predstavitvena datoteka, prenos (3,50 MB) MD5: 9DE6C696FB26B8EF3D9629FD840C31E7
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | ZRS Koper - Znanstveno-raziskovalno središče Koper / Centro di Ricerche Scientifiche Capodistria
|
---|
Povzetek: | The utilization of a non-invasive electroencephalogram (EEG) as an input sensor is a common approach in the field of the brain–computer interfaces (BCI). However, the collected EEG data pose many challenges, one of which may be the age-related variability of event-related potentials (ERPs), which are often used as primary EEG BCI signal features. To assess the potential effects of aging, a sample of 27 young and 43 older healthy individuals participated in a visual oddball study, in which they passively viewed frequent stimuli among randomly occurring rare stimuli while being recorded with a 32-channel EEG set. Two types of EEG datasets were created to train the classifiers, one consisting of amplitude and spectral features in time and another with extracted time-independent statistical ERP features. Among the nine classifiers tested, linear classifiers performed best. Furthermore, we show that classification performance differs between dataset types. When temporal features were used, maximum individuals’ performance scores were higher, had lower variance, and were less affected overall by within-class differences such as age. Finally, we found that the effect of aging on classification performance depends on the classifier and its internal feature ranking. Accordingly, performance will differ if the model favors features with large within-class differences. With this in mind, care must be taken in feature extraction and selection to find the correct features and consequently avoid potential age-related performance degradation in practice. |
---|
Ključne besede: | aging, elderly, machine learning, visual oddball study, brain-computer interface |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum sprejetja članka: | 28.01.2023 |
---|
Datum objave: | 31.01.2023 |
---|
Leto izida: | 2023 |
---|
Št. strani: | 21 str. |
---|
Številčenje: | Vol. 13, iss 2, [article no.] 391 |
---|
PID: | 20.500.12556/DiRROS-16172 |
---|
UDK: | 612.67 |
---|
ISSN pri članku: | 2075-1729 |
---|
DOI: | 10.3390/life13020391 |
---|
COBISS.SI-ID: | 140329987 |
---|
Avtorske pravice: | © 2023 by the authors. |
---|
Opomba: | Nasl. z nasl. zaslona;
Opis vira z dne 1. 2. 2023;
Soavtorji: Manca Peskar, Aleksandar Miladinović, Voyko Kavcic, Sašo Džeroski, Uros Marusic;
|
---|
Datum objave v DiRROS: | 01.02.2023 |
---|
Število ogledov: | 765 |
---|
Število prenosov: | 389 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |