Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:On the influence of aging on classification performance in the visual EEG oddball paradigm using statistical and temporal features
Avtorji:ID Omejc, Nina (Avtor)
ID Peskar, Manca (Avtor)
ID Miladinović, Aleksandar (Avtor)
ID Kavcic, Voyko (Avtor)
ID Džeroski, Sašo (Avtor)
ID Marušič, Uroš (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://doi.org/10.3390/life13020391
 
.pdf PDF - Predstavitvena datoteka, prenos (3,50 MB)
MD5: 9DE6C696FB26B8EF3D9629FD840C31E7
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo ZRS Koper - Znanstveno-raziskovalno središče Koper / Centro di Ricerche Scientifiche Capodistria
Povzetek:The utilization of a non-invasive electroencephalogram (EEG) as an input sensor is a common approach in the field of the brain–computer interfaces (BCI). However, the collected EEG data pose many challenges, one of which may be the age-related variability of event-related potentials (ERPs), which are often used as primary EEG BCI signal features. To assess the potential effects of aging, a sample of 27 young and 43 older healthy individuals participated in a visual oddball study, in which they passively viewed frequent stimuli among randomly occurring rare stimuli while being recorded with a 32-channel EEG set. Two types of EEG datasets were created to train the classifiers, one consisting of amplitude and spectral features in time and another with extracted time-independent statistical ERP features. Among the nine classifiers tested, linear classifiers performed best. Furthermore, we show that classification performance differs between dataset types. When temporal features were used, maximum individuals’ performance scores were higher, had lower variance, and were less affected overall by within-class differences such as age. Finally, we found that the effect of aging on classification performance depends on the classifier and its internal feature ranking. Accordingly, performance will differ if the model favors features with large within-class differences. With this in mind, care must be taken in feature extraction and selection to find the correct features and consequently avoid potential age-related performance degradation in practice.
Ključne besede:aging, elderly, machine learning, visual oddball study, brain-computer interface
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum sprejetja članka:28.01.2023
Datum objave:31.01.2023
Leto izida:2023
Št. strani:21 str.
Številčenje:Vol. 13, iss 2, [article no.] 391
PID:20.500.12556/DiRROS-16172 Novo okno
UDK:612.67
ISSN pri članku:2075-1729
DOI:10.3390/life13020391 Novo okno
COBISS.SI-ID:140329987 Novo okno
Avtorske pravice:© 2023 by the authors.
Opomba:Nasl. z nasl. zaslona; Opis vira z dne 1. 2. 2023; Soavtorji: Manca Peskar, Aleksandar Miladinović, Voyko Kavcic, Sašo Džeroski, Uros Marusic;
Datum objave v DiRROS:01.02.2023
Število ogledov:767
Število prenosov:389
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Life
Skrajšan naslov:Life
Založnik:MDPI
ISSN:2075-1729
COBISS.SI-ID:519982617 Novo okno

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:31.01.2023

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:staranje, starostniki, strojno učenje, gibanjeEEG, možgansko-računalniški vmesnik


Nazaj