1. Estimating the effective char depth in structural timber elements exposed to natural fires, considering the heating and cooling phaseAndrea Lucherini, Daniela Šejnová Pitelková, Vladimír Mózer, 2025, izvirni znanstveni članek Povzetek: This research study investigates the effect of different heating and cooling regimes on the effective cross-section of timber elements exposed to natural fires. An advanced calculation method based on a 1D finite-difference heat transfer model and effective thermo-physical properties is adopted to analyse the heat penetration and the consequent reduction in mechanical properties. In particular, the research focuses on the evolution and penetration speed of the char depth (300 ◦C isotherm) and zero-strength layer (determined through in-depth temperatures and reduced mechanical properties). Results reveal how the char depth mainly develops during the heating phase, with non-negligible contributions from the cooling phase. In contrast, the zero-strength layer increases throughout the whole fire exposure, particularly during cooling and, possibly, after the end of the cooling phase. In general, the heating phase contributes about 2/3 to the total effective char depth, while the cooling phase about 1/3. The most challenging conditions were found for the fires of the longest durations (heating and overall), corresponding to low ventilation and high fuel load density conditions. The study emphasises the necessity of incorporating the cooling phase in performance-based methodologies for fire-safe timber structures to avoid under-estimating heat penetration effects. Ključne besede: timber structures, fire safety, charring, zero-strength layer, natural fire, heating, cooling, structural fire engineering, performance-based design Objavljeno v DiRROS: 22.11.2024; Ogledov: 113; Prenosov: 425 Celotno besedilo (6,39 MB) Gradivo ima več datotek! Več... |
2. Model uncertainty in a parametric fire curve approach : a stochastic correction factor for the compartment fire load densityFlorian Put, Andrea Lucherini, Bart Merci, Ruben Van Coile, 2024, izvirni znanstveni članek Povzetek: A commonly used approach to represent the thermal load in a compartment fire is the Eurocode Parametric Fire Curve (EPFC), which specifies gas temperatures (or rather adiabatic surface temperatures). Recognizing the significant deviations between real fires and the EPFC framework, the concept of model uncertainty is explored. This study does not aim to assess or improve the EPFC, but introduces a model uncertainty, allowing for reliability-based structural fire engineering (SFE). It presents a stochastic correction factor for the fire load density, based on the maximum temperature in steel sections. The focus is on the fire load density, but in general other parameters can be jointly taken into account as well. This correction factor considers protected and un- protected sections, incorporating variations in section factor and protection thickness. The findings reveal that the fire load density within the EPFC framework can be modified to better represent the severity of fire ex- periments. This approach ensures physical consistency of the obtained compartment gas temperatures, as opposed to alternative approaches for addressing the EPFC model uncertainty. While promising results are evident in this proof of concept, exploration for other types of structural elements and evaluation for structural systems is necessary before integration into design practices. Ključne besede: structural fire engineering, compartment fires, fire load density, steel structures, reliability, probability of failure Objavljeno v DiRROS: 17.04.2024; Ogledov: 472; Prenosov: 94 Celotno besedilo (1,16 MB) Gradivo ima več datotek! Več... |
3. Modelling intumescent coatings for the fire protection of structural systems : a reviewAndrea Lucherini, Donatella de Silva, 2024, pregledni znanstveni članek Povzetek: Purpose
Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review.
Design/methodology/approach
Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity.
Findings
The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs.
Research limitations/implications
Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems.
Originality/value
The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies. Ključne besede: intumescent coatings, fire protection, modelling, structural fire engineering, fire safety, performance-based design Objavljeno v DiRROS: 17.04.2024; Ogledov: 507; Prenosov: 296 Celotno besedilo (720,31 KB) Gradivo ima več datotek! Več... |
4. Thermal characterisation of the cooling phase of post-flashover compartment firesAndrea Lucherini, Balša Jovanović, Jose L. Torero, Ruben Van Coile, Bart Merci, 2024, izvirni znanstveni članek Povzetek: The main characteristics of the cooling phase of post-flashover compartment fires are studied using a simplified first-principles heat transfer approach to establish key limitations of more traditional methodologies (e.g., Eurocode). To this purpose, the boundary conditions during cooling are analysed. To illustrate the importance of a first-principles approach, a detailed review of the literature is presented followed by the presentation of a simplified numerical model. The model is constructed to calculate first-order thermal conditions during the cooling phase. The model is not intended to provide a precise calculation method but rather baseline estimates that incorporate all key thermal inputs and outputs. First, the thermal boundary conditions in the heating phase are approximated with a single (gas) temperature and the Eurocode parametric fire curves, to provide a consistent initial condition for the cooling phase and to be able to compare the traditional approach to the first- principles approach. After fuel burnout, the compartment gases become optically thin and temperatures decay to ambient values, while the compartment solid elements slowly cool down. For simplicity, convective cooling of the compartment linings is estimated using a constant convective heat transfer coefficient and all linings surfaces are assumed to have the same temperature (no net radiative heat exchange). All structural elements are assumed to be thermally thick. While these simplifications introduce quantitative errors, they enable an analytical solution for transient heat conduction in a semi-infinite solid that captures all key heat transfer processes. Comparisons between the results obtained using both approaches highlight how, even when considering the same fire energy input, the thermal boundary conditions according to the Eurocode parametric fire curves lead to an increase energy accumulated in the solid after fuel burnout and a delay in the onset of cooling. This is not physically correct, and it may lead to misrepresentation of the impact of post-flashover fires on structural behaviour. Ključne besede: cooling phase, fire decay, fire dynamics, compartment fires, structural fire engineering, fire safety Objavljeno v DiRROS: 15.04.2024; Ogledov: 590; Prenosov: 270 Celotno besedilo (6,40 MB) Gradivo ima več datotek! Več... |
5. Defining the fire decay and the cooling phase of post-flashover compartment firesAndrea Lucherini, Jose L. Torero, 2023, izvirni znanstveni članek Povzetek: The current research study discusses and characterises the fire decay and cooling phase of post-flashover compartment fires, as they are often mixed up despite their important heat transfer differences. The two pha- ses are defined according to the fire heat release rate time-history. The fire decay represents the phase in which the fire heat release rate decreases from the ventilation- or fuel-limited steady-state value of the fully-developed phase to fire extinguishment. This phase is highly influenced by the fuel characteristics, ranging from fast decays for hydrocarbon and liquid fuels to slow decays for charring cellulosic fuels (wood). Once the fuel is consumed, the compartment volume enters the cooling phase, where the cooling in the gas-phase and solid-phase happens with significantly different modes and characteristic times. The thermal boundary conditions at the structural elements are then defined according to physical characteristics and dynamics within the compartment. The research study also underlines how the existing performance-based methodologies lack explicit definitions of the decay and cooling phases and the corresponding thermal boundary conditions for the design of fire-safe struc- tural elements under realistic fire conditions. Ključne besede: razpadanje ognja, hlajenje, izgorevanje, naravna izpostavljenost ognju, dinamika požara, požari v oddelkih, požarno inženirstvo, učinkovitost, požarna varnost, fire decay, cooling, burnout, natural fire exposure, fire dynamics, compartment fires, structural fire engineering, performance-based, fire safety Objavljeno v DiRROS: 13.11.2023; Ogledov: 742; Prenosov: 369 Celotno besedilo (4,91 MB) Gradivo ima več datotek! Več... |