Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (spheroids) .

1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
In vitro hepatic 3D cell models and their application in genetic toxicology : a systematic review
Martina Štampar, Bojana Žegura, 2024, pregledni znanstveni članek

Povzetek: The rapid development of new chemicals and consumer products has raised concerns about their potential genotoxic effects on human health, including DNA damage leading to serious diseases. For such new chemicals and pharmaceutical products, international regulations require genotoxicity data, initially obtained through in vitro tests, followed by in vivo experiments, if needed. Traditionally, laboratory animals have been used for this purpose, however, they are costly, ethically problematic, and often unreliable due to species differences. Therefore, innovative more accurate in vitro testing approaches are rapidly being developed to replace, refine and reduce (3R) the use of animals for experimental purposes and to improve the relevance for humans in toxicology studies. One of such innovative approaches are in vitro three-dimensional (3D) cell models, which are already being highlighted as superior alternatives to the two-dimensional (2D) cell cultures that are traditionally used as in vitro models for the safety testing of chemicals and pharmaceuticals. 3D cell models provide physiologically relevant information and more predictive data for in vivo conditions. In the review article, we provide a comprehensive overview of 3D hepatic cell models, including HepG2, HepG2/C3A, HepaRG, human primary hepatocytes, and iPSC-derived hepatocytes, and their application in the field of genotoxicology. Through a detailed literature analysis, we identified 31 studies conducted between 2007 and April 2024 that used a variety of standard methods, such as the comet assay, the micronucleus assay, and the γH2AX assay, as well as new methodological approaches, including toxicogenomics, to assess the cytotoxic and genotoxic activity of chemicals, nanoparticles and natural toxins. Based on our search, we can conclude that the use of in vitro 3D cell models for genotoxicity testing has been increasing over the years and that 3D cell models have an even greater potential for future implementation and further refinement in genetic toxicology and risk assessment.
Ključne besede: genotoxicity, advanced 3D in vitro models, hepatic cells, spheroids, comet assay, micronucleus assay, genotoxicology, toxicological studies
Objavljeno v DiRROS: 14.11.2024; Ogledov: 120; Prenosov: 59
.pdf Celotno besedilo (1,32 MB)
Gradivo ima več datotek! Več...

2.
Hepatocellular carcinoma (HepG2/C3A) cell-based 3D model for genotoxicity testing of chemicals
Martina Štampar, Helle Frandsen, Adelina Rogowska-Wrzesinska, Krzysztof Wrzesinski, Metka Filipič, Bojana Žegura, 2021, izvirni znanstveni članek

Povzetek: The major weakness of the current in vitro genotoxicity test systems is the inability of the indicator cells to express metabolic enzymes needed for the activation and detoxification of genotoxic compounds, which consequently can lead to misleading results. Thus, there is a significant emphasis on developing hepatic cell models, including advanced in vitro three-dimensional (3D) cell-based systems, which better imitate in vivo cell behaviour and offer more accurate and predictive data for human exposures. In this study, we developed an approach for genotoxicity testing with 21-day old spheroids formed from human hepatocellular carcinoma cells (HepG2/C3A) using the dynamic clinostat bioreactor system (CelVivo BAM/bioreactor) under controlled conditions. The spheroids were exposed to indirect-acting genotoxic compounds, polycyclic aromatic hydrocarbon [PAH; benzo(a) pyrene B(a)P], and heterocyclic aromatic amine [PhIP]) at non-cytotoxic concentrations for 24 and 96 h. The results showed that both environmental pollutants B(a)P and PhIP significantly increased the level of DNA strand breaks assessed by the comet assay. Further, the mRNA level of selected genes encoding metabolic enzymes from phase I and II, and DNA damage responsive genes was determined (qPCR). The 21-day old spheroids showed higher basal expression of genes encoding metabolic enzymes compared to monolayer culture. In spheroids, B(a)P or PhIP induced compound-specific up-regulation of genes implicated in their metabolism, and deregulation of genes implicated in DNA damage and immediate-early response. The study demonstrated that this model utilizing HepG2/C3A spheroids grown under dynamic clinostat conditions represents a very sensitive and promising in vitro model for genotoxicity and environmental studies and can thus significantly contribute to a more reliable assessment of genotoxic activities of pure chemicals, and complex environmental samples even at very low for environmental exposure relevant concentrations.
Ključne besede: in vitro 3D cell model, 21-day old spheroids, cytotoxic, genotoxic, gene expression
Objavljeno v DiRROS: 19.07.2024; Ogledov: 252; Prenosov: 227
.pdf Celotno besedilo (2,08 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh