1. CXCR4 antagonists as stem cell mobilizers and therapy sensitizers for acute myeloid leukemia and glioblastoma?Vashendriya V. V. Hira, Cornelis J. F. van Noorden, Remco J. Molenaar, 2020, drugi znanstveni članki Povzetek: Glioblastoma is the most aggressive and malignant primary brain tumor in adults and has a poor patient survival of only 20 months after diagnosis. This poor patient survival is at least partly caused by glioblastoma stem cells (GSCs), which are slowly-dividing and therefore therapy-resistant. GSCs are localized in protective hypoxic peri-arteriolar niches where these aforementioned stemness properties are maintained. We previously showed that hypoxic peri-arteriolar GSC niches in human glioblastoma are functionally similar to hypoxic peri-arteriolar hematopoietic stem cell (HSC) niches in human bone marrow. GSCs and HSCs express the receptor C-X-C receptor type 4 (CXCR4), which binds to the chemoattractant stromal-derived factor-1α (SDF-1α), which is highly expressed in GSC niches in glioblastoma and HSC niches in bone marrow. This receptor–ligand interaction retains the GSCs/HSCs in their niches and thereby maintains their slowly-dividing state. In acute myeloid leukemia (AML), leukemic cells use the SDF-1α–CXCR4 interaction to migrate to HSC niches and become slowly-dividing and therapy-resistant leukemic stem cells (LSCs). In this communication, we aim to elucidate how disruption of the SDF-1α–CXCR4 interaction using the FDA-approved CXCR4 inhibitor plerixafor (AMD3100) may be used to force slowly-dividing cancer stem cells out of their niches in glioblastoma and AML. Ultimately, this strategy aims to induce GSC and LSC differentiation and their sensitization to therapy.
Ključne besede: glioblastoma, glioblastoma stem cells, niches, acute myeloid leukemia, hematopoietic stem cells, bone marrow, C-X-C receptor type 4, stromal-derived factor-1 ▫$[alpha]$▫, plerixafor Objavljeno v DiRROS: 06.08.2024; Ogledov: 306; Prenosov: 398 Celotno besedilo (1,51 MB) Gradivo ima več datotek! Več... |
2. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell nichesVashendriya V. V. Hira, Cornelis J. F. van Noorden, Hetty E. Carraway, Jaroslaw P. Maciejewski, Remco J. Molenaar, 2017, pregledni znanstveni članek Povzetek: Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy. Ključne besede: hematopoietic stem cell niche, hijacking, leukemic stem cells, bone marrow, therapy resistance, leukemia Objavljeno v DiRROS: 06.08.2024; Ogledov: 269; Prenosov: 223 Celotno besedilo (1,69 MB) Gradivo ima več datotek! Več... |
3. The hypoxic peri-arteriolar glioma stem cell niche, an integrated concept of five types of niches in human glioblastomaDiana A. Aderetti, Vashendriya V. V. Hira, Remco J. Molenaar, Cornelis J. F. van Noorden, 2018, pregledni znanstveni članek Povzetek: Glioblastoma is the most lethal primary brain tumor and poor survival of glioblastoma patients is attributed to the presence of glioma stem cells (GSCs). These therapy-resistant, quiescent and pluripotent cells reside in GSC niches, which are specific microenvironments that protect GSCs against radiotherapy and chemotherapy. We previously showed the existence of hypoxic peri-arteriolar GSC niches in glioblastoma tumor samples. However, other studies have described peri-vascular niches, peri-hypoxic niches, peri-immune niches and extracellular matrix niches of GSCs. The aim of this review was to critically evaluate the literature on these five different types of GSC niches. In the present review, we describe that the five niche types are not distinct from one another, but should be considered to be parts of one integral GSC niche model, the hypoxic peri-arteriolar GSC niche. Moreover, hypoxic peri-arteriolar GSC niches are structural and functional look-alikes of hematopoietic stem cell (HSC) niches in the bone marrow. GSCs are maintained in peri-arteriolar niches by the same receptor-ligand interactions as HSCs in bone marrow. Our concept should be rigidly tested in the near future and applied to develop therapies to expel and keep GSCs out of their protective niches to render them more vulnerable to standard therapies. Ključne besede: glioblastoma, glioma stem cells, niches, blood vessels, extracellular matrix, tumor microenvironment, hypoxia, therapy resistance, vasculature Objavljeno v DiRROS: 06.08.2024; Ogledov: 368; Prenosov: 219 Celotno besedilo (966,30 KB) Gradivo ima več datotek! Več... |
4. Energy metabolism in IDH1 wild-type and IDH1-mutated glioblastoma stem cells : a novel target for therapy?Cornelis J. F. van Noorden, Vashendriya V. V. Hira, Amber J. van Dijck, Metka Novak, Barbara Breznik, Remco J. Molenaar, 2021, pregledni znanstveni članek Povzetek: Cancer is a redox disease. Low levels of reactive oxygen species (ROS) are beneficial for cells and have anti-cancer effects. ROS are produced in the mitochondria during ATP production by oxidative phosphorylation (OXPHOS). In the present review, we describe ATP production in primary brain tumors, glioblastoma, in relation to ROS production. Differentiated glioblastoma cells mainly use glycolysis for ATP production (aerobic glycolysis) without ROS production, whereas glioblastoma stem cells (GSCs) in hypoxic periarteriolar niches use OXPHOS for ATP and ROS production, which is modest because of the hypoxia and quiescence of GSCs. In a significant proportion of glioblastoma, isocitrate dehydrogenase 1 (IDH1) is mutated, causing metabolic rewiring, and all cancer cells use OXPHOS for ATP and ROS production. Systemic therapeutic inhibition of glycolysis is not an option as clinical trials have shown ineffectiveness or unwanted side effects. We argue that systemic therapeutic inhibition of OXPHOS is not an option either because the anti-cancer effects of ROS production in healthy cells is inhibited as well. Therefore, we advocate to remove GSCs out of their hypoxic niches by the inhibition of their binding to niches to enable their differentiation and thus increase their sensitivity to radiotherapy and/or chemotherapy. Ključne besede: glioblastoma stem cells, IDH1-mutation, energy metabolism Objavljeno v DiRROS: 05.08.2024; Ogledov: 363; Prenosov: 275 Celotno besedilo (3,87 MB) Gradivo ima več datotek! Več... |
5. Cathepsin K cleavage of SDF-1[alpha] inhibits its chemotactic activity towards glioblastoma stem-like cellsVashendriya V. V. Hira, Urška Verbovšek, Barbara Breznik, Matic Srdič, Marko Novinec, Hala Kakar, Jill Wormer, Britt van der Swaan, Brigita Lenarčič, Luiz Juliano, Shwetal Mehta, Cornelis J. F. van Noorden, Tamara Lah Turnšek, 2017, izvirni znanstveni članek Povzetek: Glioblastoma (GBM) is the most aggressive primary brain tumor with poor patient survival that is at least partly caused by malignant and therapy-resistant glioma stem-like cells (GSLCs) that are protected in GSLC niches. Previously, we have shown that the chemo-attractant stromal-derived factor-1α (SDF-1α), its C-X-C receptor type 4 (CXCR4) and the cysteine protease cathepsin K (CatK) are localized in GSLC niches in glioblastoma. Here, we investigated whether SDF-1α is a niche factor that through its interactions with CXCR4 and/or its second receptor CXCR7 on GSLCs facilitates their homing to niches. Furthermore, we aimed to prove that SDF-1α cleavage by CatK inactivates SDF-1α and inhibits the invasion of GSLCs. We performed mass spectrometric analysis of cleavage products of SDF-1α after proteolysis by CatK. We demonstrated that CatK cleaves SDF-1α at 3 sites in the N-terminus, which is the region of SDF-1α that binds to its receptors. Confocal imaging of human GBM tissue sections confirmed co-localization of SDF-1α and CatK in GSLC niches. In accordance, 2D and 3D invasion experiments using CXCR4/CXCR7-expressing GSLCs and GBM cells showed that SDF-1α had chemotactic activity whereas CatK cleavage products of SDF-1α did not. Besides, CXCR4 inhibitor plerixafor inhibited invasion of CXCR4/CXCR7-expressing GSLCs.
In conclusion, CatK can cleave and inactivate SDF-1α. This implies that CatK activity facilitates migration of GSLCs out of niches. We propose that activation of CatK may be a promising strategy to prevent homing of GSLCs in niches and thus render these cells sensitive to chemotherapy and radiation. Ključne besede: glioma stem-like cells, niche, stromal derived factor-[alpha], cathepsin K Objavljeno v DiRROS: 24.07.2024; Ogledov: 278; Prenosov: 235 Celotno besedilo (1,50 MB) Gradivo ima več datotek! Več... |
6. IDH1-mutant cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivityMohammed Khurshed, Niels Aarnoudse, Renske Hulsbos, Vashendriya V. V. Hira, Hanneke WM van Laarhoven, Johanna W Wilmink, Remco J. Molenaar, Cornelis J. F. van Noorden, 2018, izvirni znanstveni članek Povzetek: Isocitrate dehydrogenase (IDH1)-1 is mutated in various types of human cancer, and the presence of this mutation is associated with improved responses to irradiation and chemotherapy in solid tumor cells. Mutated IDH1 (IDH1MUT) enzymes consume NADPH to produce D-2-hydroxyglutarate (D-2HG) resulting in the decreased re ducing power needed for detoxification of reactive oxygen species (ROS), for example. The objective of the current study was to investigate the mechanism behind the chemosensitivity of the widely used anticancer agent cisplatin in IDH1MUT cancer cells. Oxidative stress, DNA damage, and mitochondrial dysfunction caused by cisplatin treatment were monitored in IDH1MUT HCT116 colorectal cancer cells and U251 glioma cells. We found that exposure to cisplatin induced higher levels of ROS, DNA double-strand breaks (DSBS), and cell death in IDH1MUT cancer cells, as compared with IDH1 wild-type (IDH1WT) cells. Mechanistic investigations revealed that cisplatin treatment dose dependently reduced oxidative respiration in IDH1MUT cells, which was accompanied by disturbed mitochondrial proteostasis, indicative of impaired mitochondrial activity. These effects were abolished by the IDH1MUT inhibitor AGI-5198 and were restored by treatment with D-2HG. Thus, our study shows that altered oxidative stress responses and a vulnerable oxidative metabolism underlie the sensitivity of IDH1MUT cancer cells to cisplatin.—Khurshed, M., Aarnoudse, N., Hulsbos, R., Hira, V. V. V., van Laarhoven, H. W. M., Wilmink, J. W., Molenaar, R. J., van Noorden, C. J. F. IDH1-mutant cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity. 32, 6344–6352 (2018). www.fasebj.org Ključne besede: isocitrate dehydrogenase, chemosensitivity, cis-diamminedichloroplatinum, 2-hydroxyglutarate Objavljeno v DiRROS: 24.07.2024; Ogledov: 244; Prenosov: 241 Celotno besedilo (1,49 MB) Gradivo ima več datotek! Več... |
7. Cysteine cathepsins B, X and K expression in peri-arteriolar glioblastoma stem cell nichesBarbara Breznik, Clara Limbaeck Stanic, Janko Kos, Mohammed Khurshed, Vashendriya V. V. Hira, Roman Bošnjak, Tamara Lah Turnšek, Cornelis J. F. van Noorden, 2018, izvirni znanstveni članek Povzetek: Glioblastoma (GBM) is the most lethal brain tumor also due to malignant and therapy-resistant GBM stem cells (GSCs) that are localized in protecting hypoxic GSC niches. Some members of the cysteine cathepsin family of proteases have been found to be upregulated in GBM. Cathepsin K gene expression is highly elevated in GBM tissue versus normal brain and it has been suggested to regulate GSC migration out of the niches. Here, we investigated the cellular distribution of cathepsins B, X and K in GBM tissue and whether these cathepsins are co-localized in GSC niches. Therefore, we determined expression of these cathepsins in serial paraffin sections of 14 human GBM samples and serial cryostat sections of two samples using immunohistochemistry and metabolic mapping of cathepsin activity using selective fluorogenic substrates. We detected cathepsins B, X and K in peri-arteriolar GSC niches in 9 out of 16 GBM samples, which were defined by co-expression of the GSC marker CD133, the niche marker stromal-derived factor-1α (SDF-1α) and smooth muscle actin as a marker for arterioles. The expression of cathepsin B and X was detected in stromal cells and cancer cells throughout the GBM sections, whereas cathepsin K expression was more restricted to arteriole-rich regions in the GBM sections. Metabolic mapping showed that cathepsin B, but not cathepsin K is active in GSC niches. On the basis of these findings, it is concluded that cathepsins B, X and K have distinct functions in GBM and that cathepsin K is the most likely GSC niche-related cathepsin of the three cathepsins investigated. Ključne besede: cysteine cathepsins, glioblastoma stem cells, niches, stroma, proteolytic activity Objavljeno v DiRROS: 24.07.2024; Ogledov: 322; Prenosov: 220 Celotno besedilo (10,33 MB) Gradivo ima več datotek! Več... |
8. Comparison of different methodologies and cryostat versus paraffin sections for chromogenic immunohistochemistryVashendriya V. V. Hira, Annique Loncq de Jong, Klea Ferro, Mohammed Khurshed, Remco J. Molenaar, Cornelis J. F. van Noorden, 2019, izvirni znanstveni članek Povzetek: Immunohistochemistry (IHC) specifically localizes proteins in cells and tissues, but methodologies vary widely. Therefore, we performed a methodological IHC optimization and validation study. First, we compared advantages and disadvantages of cryostat sections versus paraffin sections. Second, we compared and optimized antigen retrieval in paraffin sections using citrate buffer and Tris/EDTA buffer. Third, aminoethyl carbazole (AEC) and 3,3'-diaminobenzidine (DAB) were tested as horseradish peroxidase (HRP) substrates to obtain a water-insoluble coloured end product to visualize antigens. Fourth, secondary antibodies conjugated with either mono-HRP or poly-HRP were compared. The study was performed using serial sections of human tonsil. IHC was performed with primary antibodies against endothelial cell marker CD31, smooth muscle actin (SMA), chemokine stromal-derived factor-1α (SDF-1α) and its receptor C-X-C receptor type 4 (CXCR4), macrophage marker CD68 and proliferation marker Ki67. DAB rather than AEC, and cryostat sections rather than paraffin sections gave optimum staining at highest primary antibody dilutions, whereas tissue morphology in paraffin sections was superior. Loss of antigenicity in paraffin sections by formaldehyde fixation, heat and/or masking of epitopes was counteracted by antigen retrieval but not for all antigens. Two out of six antigens (CD31 and CD68) could not be retrieved irrespective time and type of retrieval. Tris-EDTA was superior to citrate buffer for antigen retrieval. The use of mono-HRP or poly-HRP depended on the affinity of the primary antibody for its antigen. We conclude that IHC methodology optimization and validation are crucial steps for each antibody and each research question. Ključne besede: immunohistochemistry, chromogens, aminoethyl carbazole, AEC, 3, 3'-diaminobenzidine, DAB, antigen retrieval, tonsil Objavljeno v DiRROS: 24.07.2024; Ogledov: 240; Prenosov: 181 Celotno besedilo (13,71 MB) Gradivo ima več datotek! Več... |
9. Poor perfusion of the microvasculature in peritoneal metastases of ovarian cancerArnoud W. Kastelein, Laura M.C. Vos, Juliette O. A. M. van Baal, Jasper J. Koning, Vashendriya V. V. Hira, Rienk Nieuwland, Willemien J. van Driel, Zühre Uz, Thomas M van Gulik, Jacco van Rheenen, Can Ince, Jan-Paul W.R. Roovers, Cornelis J. F. van Noorden, Christianne A. R. Lok, 2020, izvirni znanstveni članek Povzetek: Most women with epithelial ovarian cancer (EOC) suffer from peritoneal carcinomatosis upon first clinical presentation. Extensive peritoneal carcinomatosis has a poor prognosis and its pathophysiology is not well understood. Although treatment with systemic intravenous chemotherapy is often initially successful, peritoneal recurrences occur regularly. We hypothesized that insufficient or poorly-perfused microvasculature may impair the therapeutic efficacy of systemic intravenous chemotherapy but may also limit expansive and invasive growth characteristic of peritoneal EOC metastases. In 23 patients with advanced EOC or suspicion thereof, we determined the angioarchitecture and perfusion of the microvasculature in peritoneum and in peritoneal metastases using incident dark field (IDF) imaging. Additionally, we performed immunohistochemical analysis and 3-dimensional (3D) whole tumor imaging using light sheet fluorescence microscopy of IDF-imaged tissue sites. In all metastases, microvasculature was present but the angioarchitecture was chaotic and the vessel density and perfusion of vessels was significantly lower than in unaffected peritoneum. Immunohistochemical analysis showed expression of vascular endothelial growth factor and hypoxia inducible factor 1α, and 3D imaging demonstrated vascular continuity between metastases and the vascular network of the peritoneum beneath the elastic lamina of the peritoneum. We conclude that perfusion of the microvasculature within metastases is limited, which may cause hypoxia, affect the behavior of EOC metastases on the peritoneum and limit the response of EOC metastases to systemic treatment. Ključne besede: microvasculature, microcirculation, EOC, peritoneal carcinomatosa, incident dark feld imaging Objavljeno v DiRROS: 23.07.2024; Ogledov: 304; Prenosov: 229 Celotno besedilo (1,65 MB) Gradivo ima več datotek! Več... |
10. 2D and 3D in vitro assays to quantify the invasive behavior of glioblastoma stem cells in response to SDF-1[alpha]Vashendriya V. V. Hira, Barbara Breznik, Cornelis J. F. van Noorden, Tamara Lah Turnšek, Remco J. Molenaar, 2020, izvirni znanstveni članek Povzetek: Invasion is a hallmark of cancer and therefore in vitro invasion assays are important tools in cancer research. We aimed to describe in vitro 2D transwell assays and 3D spheroid assays to quantitatively determine the invasive behavior of glioblastoma stem cells in response to the chemoattractant SDF-1α. Matrigel was used as a matrix in both assays. We demonstrated quantitatively that SDF-1α increased invasive behavior of glioblastoma stem cells in both assays. We conclude that the 2D transwell invasion assay is easy to perform, fast and less complex whereas the more time-consuming 3D spheroid invasion assay is physiologically closer to the in vivo situation. Ključne besede: 2D transwell invasion assay, 3D spheroid invasion assay, cancer cell, cellular invasion, glioblastoma stem cells Objavljeno v DiRROS: 22.07.2024; Ogledov: 303; Prenosov: 206 Celotno besedilo (1,58 MB) Gradivo ima več datotek! Več... |