Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Na voljo sta dva načina iskanja: enostavno in napredno. Enostavno iskanje lahko zajema niz več besed iz naslova, povzetka, ključnih besed, celotnega besedila in avtorja, zaenkrat pa ne omogoča uporabe operatorjev iskanja. Napredno iskanje omogoča omejevanje števila rezultatov iskanja z vnosom iskalnih pojmov različnih kategorij v iskalna okna in uporabo logičnih operatorjev (IN, ALI ter IN NE). V rezultatih iskanja se izpišejo krajši zapisi podatkov o gradivu, ki vsebujejo različne povezave, ki omogočajo vpogled v podroben opis gradiva (povezava iz naslova) ali sprožijo novo iskanje (po avtorjih ali ključnih besedah).

Pomoč
Išči po:
Možnosti:
 


1121 - 1130 / 2000
Na začetekNa prejšnjo stran109110111112113114115116117118Na naslednjo stranNa konec
1121.
Poročilo o preskusu št.: LVG 2025-110 : vzorec št. 2025/00481
Tine Hauptman, Špela Hočevar, Barbara Piškur, 2025, izvedensko mnenje, arbitražna odločba

Ključne besede: varstvo gozdov, morfološke analize
Objavljeno v DiRROS: 09.09.2025; Ogledov: 213; Prenosov: 0
Gradivo ima več datotek! Več...

1122.
Graph Convolutional Networks for Predicting Cancer Outcomes and Stage : a focus on cGAS-STING pathway activation
Mateo Sokač, Borna Skračić, Danijel Kučak, Leo Mršić, 2024, izvirni znanstveni članek

Povzetek: The study presented in this paper evaluated gene expression profiles from The Cancer Genome Atlas (TCGA). To reduce complexity, we focused on genes in the cGAS–STING pathway, crucial for cytosolic DNA detection and immune response. The study analyzes three clinical variables: disease-specific survival (DSS), overall survival (OS), and tumor stage. To effectively utilize the high-dimensional gene expression data, we needed to find a way to project these data meaningfully. Since gene pathways can be represented as graphs, a novel method of presenting genomics data using graph data structure was employed, rather than the conventional tabular format. To leverage the gene expression data represented as graphs, we utilized a graph convolutional network (GCN) machine learning model in conjunction with the genetic algorithm optimization technique. This allowed for obtaining an optimal graph representation topology and capturing important activations within the pathway for each use case, enabling a more insightful analysis of the cGAS–STING pathway and its activations across different cancer types and clinical variables. To tackle the problem of unexplainable AI, graph visualization alongside the integrated gradients method was employed to explain the GCN model’s decision-making process, identifying key nodes (genes) in the cGAS–STING pathway. This approach revealed distinct molecular mechanisms, enhancing interpretability. This study demonstrates the potential of GCNs combined with explainable AI to analyze gene expression, providing insights into cancer progression. Further research with more data is needed to validate these findings.
Ključne besede: cGAS–STING, graph-convolutional-network, graphs, cancer, pan-cancer, machine learning, NGS
Objavljeno v DiRROS: 09.09.2025; Ogledov: 314; Prenosov: 153
.pdf Celotno besedilo (2,05 MB)
Gradivo ima več datotek! Več...

1123.
1124.
CrimsonCalc : a software tool for pressure determination based on ruby fluorescence spectra
Miha Virant, Matic Lozinšek, 2025, izvirni znanstveni članek

Objavljeno v DiRROS: 09.09.2025; Ogledov: 285; Prenosov: 99
.pdf Celotno besedilo (3,20 MB)
Gradivo ima več datotek! Več...

1125.
Charge density study of two-electron four-center bonding in a dimer of tetracyanoethylene radical anions as a benchmark for two-electron multicenter bonding
Miha Virant, Petar Štrbac, Anna Krawczuk, Valentina Milašinović, Petra Stanić, Matic Lozinšek, Krešimir Molčanov, 2024, izvirni znanstveni članek

Povzetek: The dimer of the tetracyanoethylene (TCNE) radical anions represents the simplest and the best studied case of two-electron multicenter covalent bonding (2e/mc or pancake bonding). The model compound, N-methylpyridinium salt of TCNE•–, is diamagnetic, meaning that the electrons in two contiguous radicals are paired and occupy a HOMO orbital which spans two TCNE•– radicals. Charge density in this system is studied as a benchmark for comparison of charge densities in other pancake-bonded radical systems. Two electrons from two contiguous radicals indeed form a bonding electron pair, which is distributed between two central ethylene groups in the dimer, i.e., between four carbon atoms. The topology of electron density reveals two bond critical points between the central ethylene groups in the dimer, with maximum electron density of 0.185 e Å–3; the corresponding theoretical value is 0.118 e Å–3.
Objavljeno v DiRROS: 09.09.2025; Ogledov: 284; Prenosov: 60
.pdf Celotno besedilo (4,85 MB)

1126.
Arylation of click triazoles with diaryliodonium salts
Miha Virant, Janez Košmrlj, 2019, izvirni znanstveni članek

Ključne besede: click triazoles, triazolium salts, arylation, iodonium salts
Objavljeno v DiRROS: 09.09.2025; Ogledov: 265; Prenosov: 104
.pdf Celotno besedilo (1,29 MB)
Gradivo ima več datotek! Več...

1127.
Utilizing molecular descriptor importance to enhance endpoint predictions
Benjamin Bajželj, Marjana Novič, Viktor Drgan, 2025, izvirni znanstveni članek

Objavljeno v DiRROS: 09.09.2025; Ogledov: 265; Prenosov: 104
.pdf Celotno besedilo (4,07 MB)
Gradivo ima več datotek! Več...

1128.
Automated grading through contrastive learning : a gradient analysis and feature ablation approach
Mateo Sokač, Mario Fabijanić, Igor Mekterović, Leo Mršić, 2025, izvirni znanstveni članek

Povzetek: As programming education becomes increasingly complex, grading student code has become a challenging task. Traditional methods, such as dynamic and static analysis, offer foundational approaches but often fail to provide granular insights, leading to inconsistencies in grading and feedback. This study addresses the limitations of these methods by integrating contrastive learning with explainable AI techniques to assess SQL code submissions. We employed contrastive learning to differentiate between student and correct SQL solutions, projecting them into a high-dimensional latent space, and used the Frobenius norm to measure the distance between these representations. This distance was used to predict the percentage of points deducted from each student’s solution. To enhance interpretability, we implemented feature ablation and integrated gradients, which provide insights into the specific tokens in student code that impact the grading outcomes. Our findings indicate that this approach improves the accuracy, consistency, and transparency of automated grading, aligning more closely with human grading standards. The results suggest that this framework could be a valuable tool for automated programming assessment systems, offering clear, actionable feedback and making machine learning models in educational contexts more interpretable and effective.
Ključne besede: automated programming assessment systems (APASs), contrastive learning, explainable AI, feature ablation, integrated gradients, machine learning in education, natural language processing (NLP)
Objavljeno v DiRROS: 09.09.2025; Ogledov: 312; Prenosov: 153
.pdf Celotno besedilo (4,12 MB)
Gradivo ima več datotek! Več...

1129.
Mechanism of copper-free Sonogashira reaction operates through palladium-palladium transmetallation
Martin Gazvoda, Miha Virant, Balazs Pinter, Janez Košmrlj, 2018, izvirni znanstveni članek

Ključne besede: catalytic mechanisms, homogeneous catalysis, reaction mechanisms
Objavljeno v DiRROS: 09.09.2025; Ogledov: 256; Prenosov: 104
.pdf Celotno besedilo (1,04 MB)
Gradivo ima več datotek! Več...

1130.
Report on the L'Oréal-UNESCO Prize ‘For Women in Science’
Manca Peskar, 2025, drugi sestavni deli

Ključne besede: L’Oréal-Unesco for women in science, mobile brain/body imaging, Parkinson's disease
Objavljeno v DiRROS: 09.09.2025; Ogledov: 253; Prenosov: 131
.pdf Celotno besedilo (577,50 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.81 sek.
Na vrh