Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (synthetic biology) .

1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Insect pest management in the age of synthetic biology
Rubèn Mateos Fernández, Marko Petek, Mojca Juteršek, Iryna Gerasymenko, Špela Baebler, Kalyani Kallam, Elena Moreno Gimenéz, Janine Gondolf, Alfred Nordmann, Kristina Gruden, Diego Orzaez, Nicola Patron, 2022, pregledni znanstveni članek

Povzetek: Arthropod crop pests are responsible for 20% of global annual crop losses, a figure predicted to increase in a changing climate where the ranges of numerous species are projected to expand. At the same time, many insect species are beneficial, acting as pollinators and predators of pest species. For thousands of years, humans have used increasingly sophisticated chemical formulations to control insect pests but, as the scale of agriculture expanded to meet the needs of the global population, concerns about the negative impacts of agricultural practices on biodiversity have grown. While biological solutions, such as biological control agents and pheromones, have previously had relatively minor roles in pest management, biotechnology has opened the door to numerous new approaches for controlling insect pests. In this review, we look at how advances in synthetic biology and biotechnology are providing new options for pest control. We discuss emerging technologies for engineering resistant crops and insect populations and examine advances in biomanufacturing that are enabling the production of new products for pest control.
Ključne besede: biotechnology, insect pest management, synthetic biology
Objavljeno v DiRROS: 05.08.2024; Ogledov: 103; Prenosov: 190
.pdf Celotno besedilo (1,44 MB)
Gradivo ima več datotek! Več...

2.
A chimeric vector for dual use in cyanobacteria and Escherichia coli, tested with cystatin, a nonfluorescent reporter protein
Mojca Juteršek, Marko Dolinar, 2021, izvirni znanstveni članek

Povzetek: Background Developing sustainable autotrophic cell factories depends heavily on the availability of robust and well-characterized biological parts. For cyanobacteria, these still lag behind the more advanced E. coli toolkit. In the course of previous protein expression experiments with cyanobacteria, we encountered inconveniences in working with currently available RSF1010-based shuttle plasmids, particularly due to their low biosafety and low yields of recombinant proteins. We also recognized some drawbacks of the commonly used fluorescent reporters, as quantification can be affected by the intrinsic fluorescence of cyanobacteria. To overcome these drawbacks, we envisioned a new chimeric vector and an alternative reporter that could be used in cyanobacterial synthetic biology and tested them in the model cyanobacterium Synechocystis sp. PCC 6803. Methods We designed the pMJc01 shuttle plasmid based on the broad host range RSFmob-I replicon. Standard cloning techniques were used for vector construction following the RFC10 synthetic biology standard. The behavior of pMJC01 was tested with selected regulatory elements in E. coli and Synechocystis sp. PCC 6803 for the biosynthesis of the established GFP reporter and of a new reporter protein, cystatin. Cystatin activity was assayed using papain as a cognate target. Results With the new vector we observed a significantly higher GFP expression in E. coli and Synechocystis sp. PCC 6803 compared to the commonly used RSF1010-based pPMQAK1. Cystatin, a cysteine protease inhibitor, was successfully expressed with the new vector in both E. coli and Synechocystis sp. PCC 6803. Its expression levels allowed quantification comparable to the standardly used fluorescent reporter GFPmut3b. An important advantage of the new vector is its improved biosafety due to the absence of plasmid regions encoding conjugative transfer components. The broadhost range vector pMJc01 could find application in synthetic biology and biotechnology of cyanobacteria due to its relatively small size, stability and ease of use. In addition, cystatin could be a useful reporter in all cell systems that do not contain papain-type proteases and inhibitors, such as cyanobacteria, and provides an alternative to fluorescent reporters or complements them.
Ključne besede: bacteria, cyanobacteria, synthetic biology, proteolytic cleavage, cystatin
Objavljeno v DiRROS: 19.07.2024; Ogledov: 100; Prenosov: 103
.pdf Celotno besedilo (3,66 MB)
Gradivo ima več datotek! Več...

3.
4.
Versatility of synthetic tRNAs in genetic code expansion
Kyle S. Hoffman, Ana Crnković, Dieter Söll, 2018, pregledni znanstveni članek

Ključne besede: genetic code expansion, non-canonical amino acids, selenocysteine, synthetic biology, transfer RNA
Objavljeno v DiRROS: 07.05.2020; Ogledov: 1894; Prenosov: 1309
.pdf Celotno besedilo (1012,40 KB)
Gradivo ima več datotek! Več...

5.
Iskanje izvedeno v 0.1 sek.
Na vrh