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Abstract: Transfer RNA (tRNA) is a dynamic molecule used by all forms of life as a key component
of the translation apparatus. Each tRNA is highly processed, structured, and modified, to accurately
deliver amino acids to the ribosome for protein synthesis. The tRNA molecule is a critical component
in synthetic biology methods for the synthesis of proteins designed to contain non-canonical amino
acids (ncAAs). The multiple interactions and maturation requirements of a tRNA pose engineering
challenges, but also offer tunable features. Major advances in the field of genetic code expansion
have repeatedly demonstrated the central importance of suppressor tRNAs for efficient incorporation
of ncAAs. Here we review the current status of two fundamentally different translation systems
(TSs), selenocysteine (Sec)- and pyrrolysine (Pyl)-TSs. Idiosyncratic requirements of each of these TSs
mandate how their tRNAs are adapted and dictate the techniques used to select or identify the best
synthetic variants.

Keywords: genetic code expansion; transfer RNA; synthetic biology; non-canonical amino
acids; selenocysteine

1. Introduction

Genetic code expansion (GCE) involves the engineering of protein synthesis machinery to
site-specifically incorporate non-canonical amino acids (ncAAs) into a desired protein [1,2]. This is
routinely done by assigning the ncAA to recoded stop or sense codons and delivering the ncAA to the
ribosome via a suppressor transfer RNA (tRNA). The successful charging of an ncAA to the suppressor
tRNA and incorporation at a defined codon requires an aminoacyl-tRNA synthetase (aaRS)•tRNA pair
to function orthogonally (restricting interactions with host tRNAs, aaRSs, or canonical amino acids;
Figure 1). Non-canonical amino acids endow proteins with unique chemical and physical properties
that make them useful for a wide range of applications. They serve as affinity tags, imaging probes,
environmental sensors, post-translational modifications, are used for protein crosslinking, conjugation,
and altering pKa or redox potential [3].

The most versatile aaRS for incorporating ncAAs is pyrrolysyl-tRNA synthetase (PylRS). Naturally,
PylRS attaches pyrrolysine (Pyl), the 22nd genetically encoded amino acid, to its cognate tRNAPyl,
a natural UAG suppressor. In archaea, PylRS is a single polypeptide chain; however, bacteria harbor a
split protein where the C-terminal catalytic domain is only active in the presence of the N-terminal
domain [4,5]. PylRS and its variants are polyspecific; to date they have facilitated the incorporation of
over 100 ncAAs into proteins [6]. Moreover, PylRS•tRNAPyl pairs are used to engineer proteins with
unique properties and functions in bacteria, viruses, insects, yeast, and animals [7–11].

Another valuable building block for protein engineering is the 21st amino acid, selenocysteine
(Sec). Sec is a naturally occurring amino acid that resembles cysteine but has a selenol group instead of
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the thiol. Sec is found in the active site of redox enzymes of species that span all three domains of life,
providing enhanced nucleophilic and reducing properties [12]. The site-specific incorporation of Sec
can enhance enzyme activity when replacing cysteine (Cys), increase protein stability via diselenide
bonds, and improve therapeutic peptides [13–15].
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small ribosomal subunit in tan and light grey, respectively. NcAA is depicted as a red hexagonal 
shape, while the natural AAs are given in orange. The position of the UAG codon is indicated. 

While PylRS directly ligates an ncAA onto tRNAPyl, there is no aaRS to form Sec-tRNASec. Rather, 
Sec is biosynthesized in a tRNA-dependent manner (reviewed in [4]). In bacteria, this first involves 
the charging of serine (Ser) by seryl-tRNA synthetase (SerRS) to form Ser-tRNASec, followed by the 
transfer of selenium from selenophosphate by selenocysteine synthase (SelA) for conversion to Sec-
tRNASec (Figure 2). In eukaryotes and archaea, Ser-tRNASec is phosphorylated to form O-
phosphoseryl-tRNASec (Sep-tRNASec) by Sep-tRNA kinase (PSTK) [16], to which the phosphate group 
is displaced with selenophosphate by Sep-tRNA:Sec-tRNA synthase (SepSecS) [17–19]. Sec-tRNASec 
delivery to the ribosome is aided by a selenocysteine-specific elongation factor (SelB in bacteria or 
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requires very different considerations. 

When refining Sec- and Pyl-orthogonal translation system (OTS) components for GCE, it is ideal 
to produce a high amount of the ncAA-tRNA while retaining orthogonality and limiting the effects 
on cellular fitness. Heterologous aaRS•tRNA pairs for the OTS of a particular host organism are often 
imported from a different domain of life, since tRNA identity elements and substrate recognition are 
dissimilar enough to function orthogonally [24]. Moreover, the malleable active site of PylRS allows 
straightforward directed evolution methods to identify new ncAA-activating variants; however, 
these variants are polyspecific [25], and mutations that decrease the orthogonality must be selected 

Figure 1. Suppressor transfer RNAs (tRNAs) interact with cognate orthogonal aminoacyl-tRNA
synthetases (o-aaRSs) and the translational machinery of the host. For successful non-canonical amino
acid (ncAA) incorporation, the suppressor tRNA needs to be recognized by its cognate o-aaRS and
charged with the cognate ncAA (up). When not orthogonal, the tRNA can be erroneously recognized by
an endogenous noncognate aaRS and aminoacylated with a canonical AA (cAA; down). The formation
of cAA-tRNA can lead to cAA incorporation at the ribosome in response to UAG (depicted as a dotted
arrow). Elements of the tRNA secondary structure are shown in light blue (acceptor stem), pink (D-arm),
green (anticodon arm), red (variable loop), and yellow (T-arm). The o-aaRS is shown in yellow,
noncognate, endogenous aaRS in cyan, elongation factor EF-Tu in purple, and the large and small
ribosomal subunit in tan and light grey, respectively. NcAA is depicted as a red hexagonal shape, while
the natural AAs are given in orange. The position of the UAG codon is indicated.

While PylRS directly ligates an ncAA onto tRNAPyl, there is no aaRS to form Sec-tRNASec. Rather,
Sec is biosynthesized in a tRNA-dependent manner (reviewed in [4]). In bacteria, this first involves the
charging of serine (Ser) by seryl-tRNA synthetase (SerRS) to form Ser-tRNASec, followed by the transfer
of selenium from selenophosphate by selenocysteine synthase (SelA) for conversion to Sec-tRNASec

(Figure 2). In eukaryotes and archaea, Ser-tRNASec is phosphorylated to form O-phosphoseryl-tRNASec

(Sep-tRNASec) by Sep-tRNA kinase (PSTK) [16], to which the phosphate group is displaced with
selenophosphate by Sep-tRNA:Sec-tRNA synthase (SepSecS) [17–19]. Sec-tRNASec delivery to
the ribosome is aided by a selenocysteine-specific elongation factor (SelB in bacteria or EFSec
in eukaryotes) [20,21]. Furthermore, the Sec insertion sequence (SECIS), an RNA structure in
selenoprotein mRNA, recruits the SelB/EFSec-bound Sec-tRNASec to the ribosome for the recoding of
a UGA stop codon [22,23] (Figure 2). Given the diverse set of interactions and different mechanisms
for Sec incorporation versus PylRS-mediated ncAA incorporation, the task of improving each system
requires very different considerations.

When refining Sec- and Pyl-orthogonal translation system (OTS) components for GCE, it is ideal
to produce a high amount of the ncAA-tRNA while retaining orthogonality and limiting the effects on
cellular fitness. Heterologous aaRS•tRNA pairs for the OTS of a particular host organism are often
imported from a different domain of life, since tRNA identity elements and substrate recognition
are dissimilar enough to function orthogonally [24]. Moreover, the malleable active site of PylRS
allows straightforward directed evolution methods to identify new ncAA-activating variants; however,
these variants are polyspecific [25], and mutations that decrease the orthogonality must be selected
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against. Selenocysteine-OTSs are often used in bacteria or mammalian cells that already have the Sec
pathway. Therefore, Sec pathway components are removed to prevent interaction with the OTS. Recent
work in Escherichia coli has focused on improving the Sec incorporation efficiency and discovering
EF-Tu compatible tRNASec variants for selenoprotein expression without the requirement for SECIS in
the coding sequence [26–31].
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Figure 2. Idiosyncratic features of the natural Sec-incorporation pathway. tRNASec is first misacylated
with serine (white star) by seryl-tRNA synthetase (SerRS; purple). The intermediate, Ser-tRNASec

is a substrate for selenocysteine synthase (SelA) which converts the Ser moiety to Sec (orange star).
Sec-tRNASec is recognized by the Sec-specific elongation factor SelB (dark blue). In contrast to the
general elongation factor EF-Tu, SelB approaches the ribosome bound to a Sec insertion sequence
(SECIS), an RNA structure in its cognate mRNA. In this manner Sec-tRNASec is directed to bind
an upstream UGA codon and deliver Sec to the growing polypeptide chain.

The production of Sec-tRNASec is naturally inefficient compared to canonical aminoacyl-tRNA
formation; SerRS serylates tRNASec 100-fold less efficiently than tRNASer [32]. It is likely that this
kinetic inefficiency of SerRS correlates with the low demand for Sec incorporation; there are a limited
number of proteins requiring Sec. Thus, the most challenging aspect of Sec-OTS engineering is
to achieve efficient serylation by SerRS, as well as complete conversion to Sec-tRNASec to ensure
limited amounts of Ser misincorporation during selenoprotein expression [28]. Similarly, Pyl-tRNAPyl

formation is inefficient compared to other aaRSs and PylRS has a moderate level of catalytic
activity [25,33]. It has been a candidate for the evolution of enzyme variants with increased catalytic
turnover, as well as more desirable ncAA specificity [34,35].

As a result of increasing ncAA-tRNA concentrations, the cellular levels of the PylRS•tRNAPyl

pairs and components of the Sec pathway must be manipulated to out-compete host tRNAs or
release factors for the targeted codon, while maintaining cellular fitness. Furthermore, altering
the stoichiometry of the Sec-OTS components is important for the efficiency and homogeneity of
selenoprotein production [26,29]. Thus, in addition to mutagenesis approaches to improving OTS
interactions, the expression levels of each individual component are critical.

Due to their interactions with various parts of the translation machinery, tRNAs are central to
achieving highly efficient ncAA incorporation, and both Sec- and Pyl-OTSs can be significantly improved
through tRNA engineering. This is often accomplished through rational design, structure-guided
mutagenesis, and random mutagenesis. Current molecular biology techniques facilitate the construction
of large libraries of mutants, while combining positive and negative selection has been a successful
approach to finding better variants. Here, we discuss the aspects of tRNA biology that should be carefully
considered prior to OTS engineering and review the recent developments of Sec- and Pyl-OTSs with
a main focus on tRNA design.
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2. Aspects of Heterologous tRNA Expression

2.1. Identity Elements and Recognition

The identity elements of tRNAs are nucleotides and their modifications, which function as
substrate recognition determinants. These determinants are found throughout the tRNA molecule and
are essential for interaction with enzymes for aminoacyl-tRNA formation, as well as elongation factors.
Moreover, tRNA recognition involves anti-determinant nucleotides and modifications to prevent the
binding and charging of non-cognate tRNAs. In some cases, a single nucleotide mutation can change
the tRNA identity and allow aminoacylation by a non-cognate aaRS [36]. Similarly, modifications
may also confer identity; for example, m1G37 modification of tRNAAsp in yeast is required to inhibit
erroneous charging by ArgRS [37]. While some tRNAs (such as tRNAAsp [38]), maintain their identity
elements across all domains of life through divergent evolution, domain-specific idiosyncratic features
required for aminoacylation are also present [39]. For this reason, aaRS•tRNA pairs can be transplanted
from one domain of life to another and function orthogonally with respect to host aminoacylation.

Genetic code expansion designates a particular stop codon, or an “open” codon in genetically
recoded organisms, for the insertion of an ncAA. Nonsense suppression is the most common way to
insert ncAAs, since recoding is less detrimental to the proteome, given the low occurrence of stop
codons. In this regard, the tRNAs of interest for GCE are typically those without identity elements in
the anticodon, as their anticodons can be mutated to decode a stop codon of interest, while retaining
aminoacylation capabilities. Conversely, if the active site of an aaRS is suitable for engineering
ncAA substrate specificity, the anticodon binding domain can be evolved to recognize a nonsense
suppressor tRNA [40–43].

The genetic code naturally expanded to include Sec and Pyl, through the recoding of UGA and
UAG, respectively. However, Sec can be efficiently inserted at sense codons [44,45] and improving
incorporation in a SECIS-independent manner is achieved through UAG suppression [26,28,29,31].
Anticodon mutations are sufficient to recode sense and stop codons with Sec and Pyl, since cognate
SerRS and PylRS do not utilize identity elements in the anticodon loop of tRNASec and tRNAPyl.
Thus, ncAA insertion can be easily directed towards a codon of interest using tRNASec and tRNAPyl,
within the limitations of the host organism fitness and proteome perturbation.

2.2. Heterologous tRNA Modification and Maturation

Various factors influence the available pools of the aa-tRNA that can be used for peptide synthesis
in the cell. These include amino acid and nutrient availability, tRNA expression and maturation
(transcription, gene copy number, processing, and modifications), aaRS levels, and tRNA stability
and degradation [46]. For GCE applications, the supply of ncAAs is controlled either by adding it
in excess amounts to the growth medium or through metabolic engineering of the host organism
(e.g., [47]). The biosynthesis and maturation of tRNA are more difficult processes to monitor and
control. In E. coli, orthogonal tRNAs can be transcribed from “standard” constitutive and inducible
promoters (e.g., lpp, proK, and PBAD). To mimic the coding sequences of bacterial tRNAs, the naturally
absent terminal CCA sequence is added to the 3′-end of the archaeal tRNA gene. In contrast,
to ensure proper processing in eukaryotes, the 3′-CCA sequence of bacterial orthogonal tRNA genes is
typically removed.

While archaeal tRNAs in principle are not orthogonal to eukaryotic aaRSs (one exception being
tRNAPyl), bacterial tRNAs are utilized for GCE in eukaryotic hosts [1]. However, the normal
transcription of tRNA genes in eukaryotic cells relies on RNA polymerase III, which recognizes
A- and B-box promoter elements, present in the tRNA gene itself [48,49]. The majority of prokaryotic
tRNAs lack such internal promoter sequences and the engineering of these o-tRNAs may lead to the
artificial creation of A- and B-boxes in an o-tRNA variant (see below). To adapt the o-tRNAs of bacterial
origin for transcription in yeast, two yeast Pol III promoters—the RPR1 promoter and the SNR52
promoter—have been shown to efficiently drive the expression of E. coli tRNAs [50]. Alternatively,
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a strong RNA polymerase II promoter with tandem tRNA repeats [51] or the yeast tRNAArg (used as
a part of a dicistronic construct) fused upstream of the target tRNA [52] have also been developed.

Between 6.5% and 16.5% of tRNA nucleosides are post-transcriptionally modified, depending on
the organisms [53], and over 100 different tRNA modifications have been identified (http://modomics.
genesilico.pl/modifications/). Furthermore, tRNA processing is quite complex, sometimes involving
intron splicing, trafficking to several subcellular locations [46], and even the ligation of two tRNA
halves transcribed from different genes [54]. While the tRNAs used for GCE are orthogonal with
respect to endogenous aaRSs, interactions with host modification and processing enzymes is required
for function. The addition of tRNA modifications during biosynthesis is important for the stability [55],
structure, and function of the molecule [56].

To ensure that an aberrant tRNA is not used for protein synthesis, tRNAs lacking certain
modifications are targeted by nucleases for degradation. The nuclear surveillance turnover pathway
ensures that a tRNA is properly modified during biosynthesis. For example, yeast pre-tRNAiMet

lacking m1A58 is polyadenylated by Trf4, which then triggers nuclease degradation by Rrp6 and the
nuclear exosome [57,58]. The modifications m7G and m5C also play a role in tRNA stability. The rapid
tRNA decay pathway (RTD) in yeast, involving 5′–3′ exonucleases Rat1 and Xrn1, targets mature
tRNA that lack the m7G and m5C modifications [59,60]. These nucleotides provide an additional level
of tRNA regulation and can be manipulated (through mutagenesis or the deletion of nonessential
tRNA modifying enzymes) to prevent RTD-targeting and increase tRNA abundance, or for targeted
degradation to decrease the toxicity of a suppressor tRNA [61].

The modification of tRNA nucleotides also affects codon–anticodon interactions, binding at the
ribosomal A site [62], and ultimately the suppression efficiency that is desired for GCE applications.
For instance, natural E. coli suppressors depend on the isopentenylation of adenosine 37 for full
activity [63,64]. A genetic approach to addressing this issue involves monitoring ncAA incorporation
and reporter protein yields across E. coli or yeast strain collections containing deletions and/or the
overexpression cassettes of metabolic genes. Recently it was shown that the yield and specificity of
O-phosphoserine incorporation is significantly improved by the deletion of cysteine desulfurase and
the overexpression of E. coli dimethylallyltransferase (MiaA) and pseudouridine synthase (TruB) [65].
Furthermore, a yeast study involving the removal of modifications by single gene deletions from U34,
U35, A37, U47 and C48 in the anticodon stem-loop impairs nonsense suppression, with the strongest
effect observed for U34 and A37. Interestingly, the overexpression of eEF1a rescues the activity of
an ochre suppressor tRNA (SUP4) and other non-suppressor tRNAs that lack modifications [66].
Thus, when designing suppressor tRNAs for GCE, tRNA modifications must be maintained or
compensated for, such that tRNA stability and ncAA incorporation is not compromised.

3. When Amino Acid Biosynthesis is o-tRNA-Dependent: Challenges in tRNASec Engineering

The biosynthesis of Sec-tRNASec and its delivery to the ribosome is complex compared to the
canonical amino acid pathway and involves several interactions with different portions of tRNASec.
The major challenge in engineering tRNASec for the more efficient incorporation of Sec is to improve
serylation, while also having complete conversion of Ser-tRNASec to Sec-tRNASec. In addition to this,
the requirement of a SECIS sequence directly after UGA necessitates an EF-Tu-mediated Sec insertion
pathway for the design and expression of selenoproteins in bacteria.

3.1. tRNASec Interactions

The first step in Sec biosynthesis is the charging of tRNASec with Ser by SerRS (Figure 2).
SerRS lacks an anticodon binding domain, and changes to the anticodon stem-loop do not affect
aminoacylation [67]. Rather, SerRS recognizes a long variable arm, a G73 discriminator base,
and identity elements in the acceptor and D stems [68–72], which are conserved between tRNASer and
tRNASec (Figure 3). These elements contribute to the structural features and shape of the tRNA and are
important for the backbone and sequence-specific interactions for recognition by SerRS [68]. Of these

http://modomics.genesilico.pl/modifications/
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features, the variable arm is most critical for aminoacylation. SerRS possess an N-terminal helical
extension that interacts with the variable arm of tRNASer and tRNASec, and properly orients the tRNA
3′ end for aminoacylation [68,73,74]. The overall length of the variable arm is more important than the
sequence; the insertion of only one or two nucleotides in the variable arm of tRNALeu and tRNATyr,
respectively, confers serylation activity and the deletion of a single base pair from the tRNASec variable
arm improves serylation 2–3 fold [32,70,75]. It is therefore not surprising that the variable arm accounts
for the largest influence on the Km/kcat of aminoacylation [67].

Identity elements of the tRNASec extend beyond aminoacylation and include features of SelA
and SelB interactions. Whereas canonical tRNAs have a 12-base-pair amino acid acceptor branch
(7/5; consisting of a seven-base-pair acceptor stem and a five-base-pair T stem) that is recognized
by EF-Tu/eEF1a, tRNASec has a longer 13-base-pair acceptor branch (8/5 or 9/4). The deletion
of a base pair from the acceptor stem of E. coli tRNASec to resemble that of canonical tRNASer

abolishes UGA read-through with Sec [45], likely due to the disruption of the complex formation
of tRNASec with SelA and SelB [32]. In addition to the effects of the acceptor stem length on SelA
recognition, nucleotides in the D arm form a unique structure compared to tRNASer, which is the basis
of SelA-tRNASec interaction [76].
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Figure 3. Secondary structure of E. coli tRNASer
CGA (left) and tRNASec

UCA (right). Identity elements
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and green, respectively.

Comparisons of SelB and EF-Tu complex structures show similarities of acceptor stem binding,
but also unique domains and motifs that provide tRNA specificity. The N-terminal half of SelB consists
of three domains, named D1, D2, and D3, that are analogous to those of EF-Tu [77]. D1 makes up the
GTP-binding domain whereas, D2 and D3 consist of β-barrel-like and β-barrel structures for tRNA
binding. Unique to SelB is a fourth domain (D4) comprised of four wing-helix motifs that recruit
SelB to SECIS [78]. The structures of the SelB-Sec-tRNASec complex obtained from single-particle
cryo-electron microscopy depict how the linker region between D3 and D4 binds and distorts the
variable arm of tRNASec, while an extended loop of D3 interacts with the acceptor and T stems [79].
In conjunction with the positively-charged SelB binding pocket, which provides affinity for the selenol
group of Sec, and the altered variable arm orientation of tRNASec compared to tRNASer, D3 and the
linker between D3 and D4 of SelB provide Sec-tRNASec specificity.
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3.2. Converting tRNASec Recognition from SelB to EF-Tu

The acceptor stem of the tRNASec posed a challenge for engineering the EF-Tu-mediated Sec
insertion. Although the binding specificity of tRNASec can be switched from SelB to EF-Tu by
shortening the acceptor stem [32], the eight-base-pair stem is important for the interaction with
SelA. However, three base pairs in the T stem (49:65, 50:64, and 51:63) modulate the binding affinity
of EF-Tu in a sequence-dependent manner [80]. In the same region, tRNASec has different bases.
Moreover, the last base pair of the acceptor stem and the first two base pairs of the T stem of tRNASec

are anti-determinants of EF-Tu complexed with GTP [81].
The first generation tRNASec for EF-Tu recognition, named tRNAUTu (U for Sec and Tu for EF-Tu),

was designed using E. coli tRNASer as a scaffold with the first seven base pairs of the E. coli tRNASec

acceptor stem [31]. The last base pair of the tRNAUTu acceptor stem was transplanted from tRNASer to
eliminate the EF-Tu anti-determinant position. Serylation of tRNAUTu was as efficient as canonical
tRNASer, however, the Ser to Sec conversion was hampered, which led to ~30% Ser misincorporation.
Nonetheless, tRNAUTu was successfully used to site-specifically incorporate Sec into selenoproteins of
bacterial and human origin in a SECIS-independent manner.

3.3. Improving Ser-to-Sec Conversion

Complementary approaches were taken to address the incomplete conversion of Ser-tRNAUTu

to Sec-tRNAUTu. E. coli tRNASec was used as a scaffold for the random mutagenesis of the EF-Tu
anti-determinant base pairs C7:G66, G49:U65, and C50:G64. A Sec-specific NMC-A β-lactamase
reporter was selected as an efficient tRNASec suppressor containing G7:C66, U49:G65, and C50:U64,
which was named tRNASecUX [29]. In order to achieve nearly complete conversion of Ser to Sec,
SelA expression was elevated, the tRNASecUX dosage was decreased, and PSTK was co-expressed to
form a Sep-tRNASecUX intermediate, which would remain a substrate for SelA but not for EF-Tu prior
to Sec conversion.

Other studies have built on tRNAUTu to improve Ser to Sec conversion. Using the structure
of Aquifex aeolicus SelA in a complex with Thermus tengcongensis tRNASec, twenty-nine different
tRNAUTu variants were rationally designed to include tRNASec features that interact with SelA,
while maintaining those that are required for EF-Tu binding. E. coli FDHH was used as a Sec insertion
reporter in a sensitive colorimetric assay to identify the best variant, named tRNAUTuX, which differed
from tRNAUTu at 11 positions [28]. Kinetic assays confirmed that the serylation of tRNAUTuX was
comparable to tRNAUTu and tRNASec. Ser-to-Sec conversion was increased to 90%, reaching a similar
conversion rate as E. coli tRNASec. Furthermore, Fourier transform ion cyclotron resonance (FT-ICR)
mass spectrometry analysis confirmed Sec insertion by tRNAUTuX into the selenoprotein, Grx1, but did
not detect a peak corresponding to Ser insertion. More recently, tRNAUTu was used as a template for
the generation of chimeric molecules to improve Sec incorporation and selenoprotein yields. It was
found that a single base change of A59C in tRNAUTu, generating a molecule named tRNAUTu6, resulted
in the highest expression levels of human GPx1 and nearly 90% Sec incorporation [27].

3.4. Different tRNASec Structures for the Optimization of Selenoprotein Production

In a bioinformatic search for novel tRNASec molecules, a group of tRNAs with unusual cloverleaf
structures were identified, named allo-tRNA [82,83]. Certain allo-tRNA species had tRNASer identities
and functioned as efficient amber suppressors with Ser [82]. Allo-tRNAs also contain SelA identity
elements, but have a 12-base-pair acceptor branch as opposed to the 13-pair branch present in most
tRNASec molecules. SelA from Aeromonas salmonicida subsp. pectinolytica 34mel (As) was coupled
with allo-tRNA for selenoprotein expression, since its cognate tRNASec also possesses a 12-base-pair
acceptor branch [26]. Allo-tRNA nucleotides in the D stem and acceptor stem were mutated to include
As tRNASec identities. In addition, the stoichiometry of allo-tRNA to As SelA was altered to ensure the
complete sequestration of the tRNA for Ser-to-Sec conversion while also maintaining non-toxic levels
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of As SelA. Further optimizations and metabolic engineering efforts created a Sec-OTS consisting of
allo-tRNAUTu2D, As SelD, As SelA, and Treponema denticola Trx1. Along with the high selenoprotein
yields obtained with a Sec incorporation efficiency estimated at >90%, the stand-alone capabilities of
this system make it ideal for use in other organisms [26].

4. Absolutely Orthogonal? Unique Features of tRNAPyl

Compared to the Sec system, the use of Pyl-OTS is comparatively less challenging, as its tRNA is
orthogonal in the majority of model organisms used for GCE [84]; the enzyme is also orthogonal to
both cellular tRNAs, as well as natural/canonical AAs [85]. Both bacterial and eukaryotic elongation
factors accept tRNAPyl, and the AA-binding pocket can be separately adapted to accept some bulkier
ncAAs [86]. Attempts to advance ncAA delivery by tRNAPyl engineering include those aiming to
improve its compatibility with the cellular machinery of the host. In E. coli, tRNAPyl was evolved by
targeting the EF-Tu-binding regions [87], although the optimizing mutations present in tRNAPyl

OPT

may be more suitable for the delivery of one particular ncAA and less for the other (e.g., Nε-acetyllyine
vs. 3-cyano-phenylalanine) [88]. The need to separately evolve an o-tRNA for a variety of “cognate”
ncAAs or a variety of anticodons may require tunable binding by EF-Tu and the ribosome; while the
stability of the EF-Tu•ncAA-tRNA complex reflects additive contributions by the ncAA and T-stem base
pairs of the o-tRNA [80,89], the strength of codon–anticodon binding correlates with the nucleotide
composition of the tRNA core [90]. For efficient expression in mammalian systems, a stabilizing
mutation in the anticodon stem has been used (U29aC, Figure 4) [91,92]. By introducing elements
conserved in human tRNAs, a better performing tRNAPyl was evolved. Mutations in the D-stem,
D-loop, T-loop and the anticodon-stem U29aC proved to be indispensable for high activity [93];
compared to wild type tRNAPyl, the use of this variant in HEK293 cells improved the incorporation of
two ncAAs, Nε-carbobenzyloxy-lysine (Z-lysine) and Nε-(tert-butoxycarbonyl)-lysine (Boc-lysine).
Interestingly, a chimera between mitochondrial (mt) tRNASer and Methanosarcina mazei tRNAPyl

improved the insertion of Boc-lysine selectively (C15) [93]. Earlier attempts at using mttRNASer in
E. coli failed, due to the lack of orthogonality [94]. The improved activity of M15 and C15 variants in
mammalian cell lines may have to do with the appearance of the B-box in the T-arm of the variants;
prokaryotic o-tRNAs are usually placed under the external promoter, such as U6, but the endogenous
tRNAs are transcribed from internal A- and B-box promoters [48].

One of the distinct features of the Pyl system is the minimal variable loop of tRNAPyl,
which together with the T-loop forms a dipped surface [35,95] (Figure 4). From the crystal structure
of the N-terminal domain of M. mazei PylRS it is evident that this minimalistic variable loop
is a prerequisite for effective binding, as a larger variable loop would sterically clash with the
N-domain [35]. In addition to M. mazei, Desulfitobacterium hafniense Pyl-OTS was employed in
E. coli, either with its original N-terminal domain, or as a fusion with the recombinant (chimeric)
N-domain of the archaeal system [96]. However, this system is not functional in mammalian cells [93].
As the N-terminal domain binds tRNAPyl with extremely high affinity [4], this element is likely to be
an important contributor to (almost universal) Pyl-OTS orthogonality.
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systems (OTSs) [97,98].

However, some organisms do not possess an equivalent to this N-domain [99], suggesting
an alternative mode of recognition. This fact was recently exploited to develop mutually orthogonal
Pyl-OTSs in E. coli [98] and mammalian cell lines [97,100]. Two PylRS enzymes that utilize the
C-domain only (Methanomethylophilus alvus and methanogenic archaeon ISO4-G1) are highly active
in E. coli [98]. Their cognate tRNAs retain some characteristic MmtRNAPyl features (such as the
identity of the discriminator base G73, or the minimalistic D-loop) but also diverge in the nucleotide
composition of the acceptor stem and in the probable structure of the anticodon stem (Figure 4).
Given that the M. mazei and M. alvus/G1 systems are not fully orthogonal, rational engineering was
employed in order to generate MatRNAPyl that would be recognized by MaPylRS and not MmPylRS.
Variation of the nucleotide composition of the variable arm and/or its length allowed the generation of
successful MatRNAPyl variants. Given the malleability of the PylRS active site, orthogonality to other
OTSs [26,101], together with high activity of Pyl-OTSs in the bacteria and cells of higher eukaryotes [6],
it is foreseeable that this dual encoding system will be commonly used.

The creation of multiple, mutually orthogonal OTSs is inherently related to the number of liberated
codons that can be targeted for ncAA incorporation. In addition to UAG-directed incorporation,
Pyl-OTS was also employed for ncAA incorporation in response to rare arginine (AGG) codons in
E. coli, alone [102] or in tandem with Methanocaldococcus jannaschii Tyr-OTS [26]. A similar strategy
was attempted in Mycoplasma capricolum, which possesses only six arginine CGG codons that should,
in theory, facilitate the reassignment (Arg-to-Pyl) [103]. However, upon mutation of the tRNAPyl

anticodon to CCG this almost universally orthogonal tRNA becomes a substrate for endogenous
ArgRS. In conclusion, while the anticodon-blind recognition of PylRS allows the anticodon of tRNAPyl

to be mutated into any nucleotide triplet, synonymous anticodons (such as CCU and CCG) can
be recognized by host aaRSs with very different affinity, causing one tRNAPyl variant to lose its
initial orthogonality.

5. Conclusions/Outlook

Improvements to OTSs have been emerging rapidly in recent years and are valuable for the
accurate and efficient production of proteins containing ncAAs. The increasing amount of sequence
data and bioinformatic/structural analyses reveal new molecules and novel mechanisms that help
enhance each system. Moreover, advanced molecular cloning and directed evolution techniques help
further shape the molecules that nature has provided into molecules that are better suited for the
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incorporation of ncAAs. tRNAs interact with each component of an OTS in the process of bringing the
ncAA to the ribosome to insert a particular ncAA during peptide synthesis. For this reason, finding the
best tRNA variant is critical for OTS developments. Our expanding knowledge of tRNA processing,
maturation, and interaction mechanisms has guided tRNA engineering towards this goal. As we
continue to learn more from nature and as technologies advance, it is conceivable that peptides with
unique properties will be produced with significant industrial and medical implications.
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