Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Na voljo sta dva načina iskanja: enostavno in napredno. Enostavno iskanje lahko zajema niz več besed iz naslova, povzetka, ključnih besed, celotnega besedila in avtorja, zaenkrat pa ne omogoča uporabe operatorjev iskanja. Napredno iskanje omogoča omejevanje števila rezultatov iskanja z vnosom iskalnih pojmov različnih kategorij v iskalna okna in uporabo logičnih operatorjev (IN, ALI ter IN NE). V rezultatih iskanja se izpišejo krajši zapisi podatkov o gradivu, ki vsebujejo različne povezave, ki omogočajo vpogled v podroben opis gradiva (povezava iz naslova) ali sprožijo novo iskanje (po avtorjih ali ključnih besedah).

Pomoč
Išči po:
Možnosti:
 


1151 - 1160 / 2000
Na začetekNa prejšnjo stran112113114115116117118119120121Na naslednjo stranNa konec
1151.
Automated grading through contrastive learning : a gradient analysis and feature ablation approach
Mateo Sokač, Mario Fabijanić, Igor Mekterović, Leo Mršić, 2025, izvirni znanstveni članek

Povzetek: As programming education becomes increasingly complex, grading student code has become a challenging task. Traditional methods, such as dynamic and static analysis, offer foundational approaches but often fail to provide granular insights, leading to inconsistencies in grading and feedback. This study addresses the limitations of these methods by integrating contrastive learning with explainable AI techniques to assess SQL code submissions. We employed contrastive learning to differentiate between student and correct SQL solutions, projecting them into a high-dimensional latent space, and used the Frobenius norm to measure the distance between these representations. This distance was used to predict the percentage of points deducted from each student’s solution. To enhance interpretability, we implemented feature ablation and integrated gradients, which provide insights into the specific tokens in student code that impact the grading outcomes. Our findings indicate that this approach improves the accuracy, consistency, and transparency of automated grading, aligning more closely with human grading standards. The results suggest that this framework could be a valuable tool for automated programming assessment systems, offering clear, actionable feedback and making machine learning models in educational contexts more interpretable and effective.
Ključne besede: automated programming assessment systems (APASs), contrastive learning, explainable AI, feature ablation, integrated gradients, machine learning in education, natural language processing (NLP)
Objavljeno v DiRROS: 09.09.2025; Ogledov: 313; Prenosov: 153
.pdf Celotno besedilo (4,12 MB)
Gradivo ima več datotek! Več...

1152.
Mechanism of copper-free Sonogashira reaction operates through palladium-palladium transmetallation
Martin Gazvoda, Miha Virant, Balazs Pinter, Janez Košmrlj, 2018, izvirni znanstveni članek

Ključne besede: catalytic mechanisms, homogeneous catalysis, reaction mechanisms
Objavljeno v DiRROS: 09.09.2025; Ogledov: 259; Prenosov: 106
.pdf Celotno besedilo (1,04 MB)
Gradivo ima več datotek! Več...

1153.
Report on the L'Oréal-UNESCO Prize ‘For Women in Science’
Manca Peskar, 2025, drugi sestavni deli

Ključne besede: L’Oréal-Unesco for women in science, mobile brain/body imaging, Parkinson's disease
Objavljeno v DiRROS: 09.09.2025; Ogledov: 253; Prenosov: 131
.pdf Celotno besedilo (577,50 KB)
Gradivo ima več datotek! Več...

1154.
Strength prominence index : a link prediction method in fuzzy social network
Sakshi Dev Pandey, Sovan Samanta, Leo Mršić, Antonios Kalampakas, Tofigh Allahviranloo, 2025, izvirni znanstveni članek

Povzetek: Link prediction is a field within social network studies that aims to forecast future connections based on the structure of a social network. This paper introduces a link prediction method based on the strength and prominence of seed node pairs, referred to as the strength prominence index. In this method, we get a consistent score for any pair of nodes, regardless of whether they share a common neighbour. Several key characteristics have been identified. In our experiments, we used three well-known estimators to evaluate the accuracy of link prediction algorithms: precision, area under the precision-recall curve, and area under the receiver operating characteristic curve. A comparative study with existing methods is also presented, supported by relevant graphs and tables. Validation using Facebook data sets demonstrates the effectiveness of the proposed method.
Ključne besede: link prediction, similarity indices, fuzzy social network, strength prominence (SP) index
Objavljeno v DiRROS: 09.09.2025; Ogledov: 316; Prenosov: 88
.pdf Celotno besedilo (2,12 MB)

1155.
1156.
1157.
1158.
Gozdovi in gozdarstvo Slovenije
2025, strokovna monografija

Objavljeno v DiRROS: 09.09.2025; Ogledov: 297; Prenosov: 171
.pdf Celotno besedilo (259,73 MB)

1159.
Poročilo o preskusu št.: LVG 2025-116 : vzorec št. 2025/00518
Ana Brglez, Patricija Podkrajšek, Špela Hočevar, Barbara Piškur, 2025, izvedensko mnenje, arbitražna odločba

Ključne besede: varstvo gozdov, morfološke analize
Objavljeno v DiRROS: 08.09.2025; Ogledov: 245; Prenosov: 0
Gradivo ima več datotek! Več...

1160.
Poročilo o preskusu št.: LVG 2025-117 : vzorec št. 2025/00522
Ana Brglez, Patricija Podkrajšek, Špela Hočevar, Barbara Piškur, 2025, izvedensko mnenje, arbitražna odločba

Ključne besede: varstvo gozdov, morfološke analize
Objavljeno v DiRROS: 08.09.2025; Ogledov: 288; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.8 sek.
Na vrh