Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | SLO | ENG

Naslov:A comparison of models for forecasting the residential natural gas demand of an urban area
Avtorji:Hribar, Rok (Avtor)
Potočnik, Primož (Avtor)
Šilc, Jurij (Avtor)
Papa, Gregor (Avtor)
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo IJS - Institut Jožef Stefan
Povzetek:Forecasting the residential natural gas demand for large groups of buildings is extremely important for efficient logistics in the energy sector. In this paper different forecast models for residential natural gas demand of an urban area were implemented and compared. The models forecast gas demand with hourly resolution up to 60 h into the future. The model forecasts are based on past temperatures, forecasted temperatures and time variables, which include markers for holidays and other occasional events. The models were trained and tested on gas-consumption data gathered in the city of Ljubljana, Slovenia. Machine-learning models were considered, such as linear regression, kernel machine and artificial neural network. Additionally, empirical models were developed based on data analysis. Two most accurate models were found to be recurrent neural network and linear regression model. In realistic setting such trained models can be used in conjunction with a weather-forecasting service to generate forecasts for future gas demand.
Ključne besede:demand forecasting, buildings, energy modeling, forecast accuracy, machine learning
Leto izida:2019
UDK:004.9:620.9(045)
ISSN pri članku:0360-5442
OceCobissID:25394688 Povezava se odpre v novem oknu
COBISS_ID:31841575 Povezava se odpre v novem oknu
DOI:10.1016/j.energy.2018.10.175 Povezava se odpre v novem oknu
Število ogledov:1059
Število prenosov:514
Datoteke:.pdf PDF - Predstavitvena datoteka, prenos (968,06 KB)
 
Nadgradivo:Energy
Pergamon Press
 
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
:
  
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.


Gradivo je financirano iz projekta

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije (ARRS)
Številka projekta:P2-0098
Naslov:

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije (ARRS)
Številka projekta:P2-0241
Naslov:

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije (ARRS)
Številka projekta:PR-07606
Naslov:

Nazaj