Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:AI-enabled end-of-line quality control in electric motor manufacturing : methods, challenges, and future directions
Avtorji:ID Mlinarič, Jernej, Institut "Jožef Stefan" (Avtor)
ID Dolanc, Gregor, Institut "Jožef Stefan" (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2075-1702/14/2/149
 
.pdf PDF - Predstavitvena datoteka, prenos (2,47 MB)
MD5: 7DE4EC8C2A1DA3BC43CCA44F86865B96
 
Jezik:Angleški jezik
Tipologija:1.02 - Pregledni znanstveni članek
Organizacija:Logo IJS - Institut Jožef Stefan
Povzetek:End-of-Line (EoL) quality control plays a crucial role in ensuring the reliability, safety, and performance of electric motors in modern industrial production. Increasing product complexity, tighter manufacturing tolerances, and rising production quantities have exposed the limitations of conventional EoL inspection systems, which rely primarily on manually crafted features, expert-defined thresholds, and rule-based decision logic. In recent years, artificial intelligence (AI) techniques, including machine learning (ML), deep learning (DL), and transfer learning (TL), have emerged as promising solutions to overcome these limitations by enabling data-driven, adaptive, and scalable quality inspection. This paper presents a comprehensive and structured review of the latest advances in intelligent EoL quality inspection for electric motor production. It systematically surveys the non-invasive measurement techniques that are commonly employed in industrial environments and examines the evolution from traditional signal processing-based inspection to AI-based approaches. ML methods for feature selection and classification, DL models for raw signal-based fault detection, and TL strategies for data-efficient model adaptation are critically analyzed in terms of their effectiveness, robustness, interpretability, and industrial applicability. Furthermore, this work identifies key challenges that prevent the widespread adoption of AI-based EoL inspection systems, including dependence on expert knowledge, limited availability of labeled fault data, generalization between motor variants and production condition, and the lack of standardized evaluation methodologies. Based on the identified research gaps, this review outlines research directions and emerging concepts for developing robust, interpretable, and data-efficient intelligent inspection systems suitable for real-world manufacturing environments. By synthesizing recent advances and highlighting open challenges, this review aims to support researchers and experts in designing next-generation intelligent EoL quality control systems that enhance production efficiency, reduce operational costs, and improve product reliability.
Ključne besede:fault detection, condition monitoring
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Poslano v recenzijo:30.12.2025
Datum sprejetja članka:19.01.2026
Datum objave:28.01.2026
Založnik:MDPI
Leto izida:2026
Št. strani:str. 1-23
Številčenje:Vol. 14, iss. 2, [article no.] 149
Izvor:Švica
PID:20.500.12556/DiRROS-27393 Novo okno
UDK:004.8
ISSN pri članku:2075-1702
DOI:10.3390/machines14020149 Novo okno
COBISS.SI-ID:267289859 Novo okno
Avtorske pravice:© 2026 by the authors.
Opomba:Nasl. z nasl. zaslona; Soavtorji: Boštjan Pregelj, Pavle Boškoski, Janko Petrovčič, Gregor Dolanc; Opis vira z dne 4. 2. 2026;
Datum objave v DiRROS:04.02.2026
Število ogledov:44
Število prenosov:24
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Machines
Skrajšan naslov:Machines
Založnik:MDPI
ISSN:2075-1702
COBISS.SI-ID:17129750 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0001-2022
Naslov:Sistemi in vodenje

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:L2-4454-2022
Naslov:Minimalno-invazivni samorazvijajoči diagnostični sistemi: ključni element tovarn prihodnosti

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:28.01.2026
Vezano na:VoR

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:AI-enabled end-of-line quality control in electric motor manufacturing: methods, challenges, and future directions
Ključne besede:zaznavanje napak


Nazaj