Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Predictions of failed satellite retrieval of air quality using machine learning
Avtorji:ID Malina, Edward (Avtor)
ID Brence, Jure, Institut "Jožef Stefan" (Avtor)
ID Adams, Jennifer (Avtor)
ID Tanevski, Jovan, Institut "Jožef Stefan" (Avtor)
ID Džeroski, Sašo, Institut "Jožef Stefan" (Avtor)
ID Kantchev, Valentin (Avtor)
ID Bowman, Kevin W. (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://amt.copernicus.org/articles/18/1689/2025/
 
.pdf PDF - Predstavitvena datoteka, prenos (13,63 MB)
MD5: EBD4DF5E7ED6AAB26E3F811A93CF8AC7
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo IJS - Institut Jožef Stefan
Povzetek:The growing fleet of Earth observation (EO) satellites is capturing unprecedented quantities of information about the concentration and distribution of trace gases in the Earth's atmosphere. Depending on the instrument and algorithm, the yield of good remote soundings can be a few percent owing to interferences such as clouds, non-linearities in the retrieval algorithm, and systematic errors in the radiative transfer algorithm, leading to inefficient use of computational resources. In this study, we investigate machine learning (ML) techniques to predict failures in the trace gas retrieval process based upon the input satellite radiances alone, allowing for efficient production of good-quality data. We apply this technique to ozone and other retrievals using measurements from multiple satellites: the Suomi National Polar-orbiting Partnership Cross-Track Infrared Sounder (Suomi NPP CrIS) and joint retrievals from the Atmospheric Infrared Sounder (AIRS) Ozone Monitoring Instrument (OMI). Retrievals are performed using the MUlti-SpEctra, MUlti-SpEcies, Multi-SEnsors (MUSES) algorithm. With this tool, we can identify 80 % of ozone retrieval failures using the MUSES algorithm at a cost of 20 % false positives from CrIS. For AIRS-OMI, 98 % of ozone retrieval failures are identified at a cost of 2 % false positives. The ML tool is simple to generate and takes <0.1 s to assess each measured spectrum. The results suggest that this tool can be applied to data from many EO satellites and can reduce the processing load for current and future instruments.
Ključne besede:trace gases, failure prediction
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Poslano v recenzijo:27.07.2024
Datum sprejetja članka:10.02.2025
Datum objave:16.04.2025
Založnik:Copernicus Publications
Leto izida:2025
Št. strani:str. 1689-1715
Številčenje:Vol. 18, iss. 7
Izvor:Nemčija
PID:20.500.12556/DiRROS-25416 Novo okno
UDK:004.8
ISSN pri članku:1867-8548
DOI:10.5194/amt-18-1689-2025 Novo okno
COBISS.SI-ID:265157123 Novo okno
Avtorske pravice:© Author(s) 2025.
Opomba:Nasl. z nasl. zaslona; Soavtorji iz Slovenije: Jure Brence, Jovan Tanevski, Sašo Džeroski; Opis vira z dne 19. 1. 2026;
Datum objave v DiRROS:20.01.2026
Število ogledov:107
Število prenosov:65
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Atmospheric measurement techniques
Skrajšan naslov:Atmos. meas. tech.
Založnik:Copernicus Publications
ISSN:1867-8548
COBISS.SI-ID:522351897 Novo okno

Gradivo je financirano iz projekta

Financer:National Aeronautics and Space Administration

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:16.04.2025
Vezano na:VoR

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:plini v sledovih, zaznavanje napak, napovedovanje napak


Nazaj