Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:deadtrees.earth — An open-access and interactive database for centimeter-scale aerial imagery to uncover global tree mortality dynamics
Avtorji:ID Mosig, Clemens (Avtor)
ID Vajna-Jehle, Janusch (Avtor)
ID Mahecha, Miguel D. (Avtor)
ID Cheng, Yan (Avtor)
ID Hartmann, Henrik (Avtor)
ID Montero, David (Avtor)
ID Junttila, Samuli (Avtor)
ID Horion, Stephanie (Avtor)
ID Beloiu Schwenke, Mirela (Avtor)
ID Koontz, Michael J. (Avtor), et al.
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0034425725004316?via%3Dihub
 
.pdf PDF - Predstavitvena datoteka, prenos (6,32 MB)
MD5: 24FE0376CB187F868E3161D04247B841
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo SciVie - Gozdarski inštitut Slovenije
Povzetek:Excessive tree mortality is a global concern and remains poorly understood as it is a complex phenomenon. We lack global and temporally continuous coverage on tree mortality data. Ground-based observations on tree mortality, e.g., derived from national inventories, are very sparse, and may not be standardized or spatially explicit. Earth observation data, combined with supervised machine learning, offer a promising approach to map overstory tree mortality in a consistent manner over space and time. However, global-scale machine learning requires broad training data covering a wide range of environmental settings and forest types. Low altitude observation platforms (e.g., drones or airplanes) provide a cost-effective source of training data by capturing high-resolution orthophotos of overstory tree mortality events at centimeter-scale resolution. Here, we introduce deadtrees.earth, an open-access platform hosting more than two thousand centimeter-resolution orthophotos, covering more than 1,000,000 ha, of which more than 58,000 ha are manually annotated with live/dead tree classifications. This community-sourced and rigorously curated dataset can serve as a comprehensive reference dataset to uncover tree mortality patterns from local to global scales using space-based Earth observation data and machine learning models. This will provide the basis to attribute tree mortality patterns to environmental changes or project tree mortality dynamics to the future. The open nature of deadtrees.earth, together with its curation of high-quality, spatially representative, and ecologically diverse data will continuously increase our capacity to uncover and understand tree mortality dynamics.
Ključne besede:orthophoto, drone, tree mortality, remote sensing, database, citizen science, forests
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Leto izida:2026
Št. strani:str. 1-15
Številčenje:Vol. 332, article no. ǂ115027
PID:20.500.12556/DiRROS-25340 Novo okno
UDK:630*58
ISSN pri članku:1879-0704
DOI:10.1016/j.rse.2025.115027 Novo okno
COBISS.SI-ID:264976131 Novo okno
Opomba:Nasl. z nasl. zaslona; Skupno št. avtorjev: 206; Avtor iz Slovenije: L. Capuder; Opis vira z dne 16. 1. 2026;
Datum objave v DiRROS:16.01.2026
Število ogledov:37
Število prenosov:31
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Remote sensing of environment
Založnik:Elsevier
ISSN:1879-0704
COBISS.SI-ID:23028485 Novo okno

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:občanska znanost, droni, umrljivost dreves, gozdovi, daljinsko zaznavanje


Nazaj