Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Experimental and numerical investigation of the fire behavior of double-glass building integrated photovoltaic modules with PVB interlayers
Avtorji:ID Yu, Wanning (Avtor)
ID Yang, Lizhong (Avtor)
ID Wang, Xinyang (Avtor)
ID Lai, Dimeng (Avtor)
ID Jomaas, Grunde (Avtor)
ID Liew, Kim M. (Avtor)
ID Ju, Xiaoyu (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://doi.org/10.1016/j.energy.2025.139726
 
.pdf PDF - Predstavitvena datoteka, prenos (8,85 MB)
MD5: 87BCF0ABE9781DAA74C5BCA2EFA5EAF7
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo ZAG - Zavod za gradbeništvo Slovenije
Povzetek:Amid rising global energy demands and environmental concerns, energy-efficient, or ‘green’, buildings are becoming mandatory in building regulations worldwide. In that context, building-integrated photovoltaics (BIPV), which merge photovoltaic (PV) modules with architectural design, are gaining widespread adoption. To assess fire safety aspects of BIPV, the fire performance of double-glass PV modules with polyvinyl butyral (PVB) encapsulation in BIPV façade systems was studied experimentally and numerically. More specifically, fire experiments were conducted under varying radiative heat fluxes to evaluate thermal degradation, fire behavior, and toxic gas emissions. Key parameters, including ignition time, heat release rate per unit area (HRRPUA), mass loss rate (MLR), and gas composition, were analyzed. The results confirm that a higher external heat flux markedly reduces ignition time while increasing HRRPUA and MLR for BIPV, which is in line with results for other materials. The primary toxic gases emitted during combustion were CO, CO2, H2, and SO2, with CO and CO2 emissions rising significantly at elevated heat fluxes. To complement the experimental results, a numerical model coupling transient heat conduction and pyrolysis kinetics was developed to predict the pre-ignition thermal response of the multilayer structure. The model employed layer discretization and temperature-dependent boundaries, demonstrating close agreement with experimental data. Therefore, it enabled systematic analyses of the sensitivity of PV module material flammability to incident radiative heat fluxes, material properties, and geometric configurations. This combined experimental and numerical approach offers a predictive framework for assessing fire risks and optimizing the fire safety design of BIPV systems.
Ključne besede:fire behavior, combustion stages, PV modules, heat conduction pyrolysis model, module toxicity, fire safety
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum objave:20.12.2025
Založnik:Elsevier Science
Leto izida:2025
Št. strani:str. 1-39
Številčenje:[article no.] 139726
PID:20.500.12556/DiRROS-25167 Novo okno
UDK:621.3
ISSN pri članku:1873-6785
DOI:10.1016/j.energy.2025.139726 Novo okno
COBISS.SI-ID:262707459 Novo okno
Avtorske pravice:© 2025 The Authors
Datum objave v DiRROS:13.01.2026
Število ogledov:99
Število prenosov:62
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Energy
Založnik:Elsevier Science
ISSN:1873-6785
COBISS.SI-ID:15306011 Novo okno

Gradivo je financirano iz projekta

Financer:National Nature Science Foundation of China
Številka projekta:52506172

Financer:Drugi - Drug financer ali več financerjev
Številka projekta:GG2320007006
Naslov:National High-Level Talent Youth Project

Financer:Drugi - Drug financer ali več financerjev
Številka projekta:S20240148
Naslov:National Foreign Experts Program

Financer:USTC - University of Science and Technology of China
Številka projekta:YD2320002009
Naslov:USTC Research Funds of the Double First-Class Initiative

Financer:USTC - University of Science and Technology of China
Številka projekta:KY2320000046
Naslov:USTC Start Research Funding

Financer:USTC - University of Science and Technology of China
Številka projekta:KY2320000055
Naslov:USTC Start Research Funding

Financer:Research Grants Council of the Hong Kong Special Administrative Region
Številka projekta:9043684

Financer:Research Grants Council of the Hong Kong Special Administrative Region
Številka projekta:11207424

Financer:EC - European Commission
Program financ.:H2020
Številka projekta:952395
Naslov:Fire-safe Sustainable Built Environment
Akronim:FRISSBE

Licence

Licenca:CC BY-NC 4.0, Creative Commons Priznanje avtorstva-Nekomercialno 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc/4.0/deed.sl
Opis:Licenca Creative Commons, ki prepoveduje komercialno uporabo, vendar uporabniki ne rabijo upravljati materialnih avtorskih pravic na izpeljanih delih z enako licenco.
Začetek licenciranja:22.12.2025
Vezano na:Text and Data Mining valid from 2026-01-01 Text and Data Mining valid from 2026-01-01 Version of Record valid from 2025-12-22

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:vedenje ognja, stopnje gorenja, PV moduli, model pirolize toplotnega prevajanja, toksicnost modulov, požarna varnost


Nazaj