Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Radio signals recognition with unsupervised deep learning : a survey
Avtorji:ID Milosheski, Ljupcho, Institut "Jožef Stefan" (Avtor)
ID Bertalanič, Blaž, Institut "Jožef Stefan" (Avtor)
ID Fortuna, Carolina, Institut "Jožef Stefan" (Avtor)
ID Mohorčič, Mihael, Institut "Jožef Stefan" (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://ieeexplore.ieee.org/document/11311988
 
.pdf PDF - Predstavitvena datoteka, prenos (3,84 MB)
MD5: A1AC2C36A0A3C52CC9D42472D35093A7
 
Jezik:Angleški jezik
Tipologija:1.02 - Pregledni znanstveni članek
Organizacija:Logo IJS - Institut Jožef Stefan
Povzetek:Optimization of wireless network parameters relies on the awareness of a dynamically changing radio environment, which depends on the presence of active devices characterized by various radio access technologies (RATs), modulation schemes, and overall spectrum usage patterns, and can be determined by advanced radio signal recognition methods. While various supervised machine learning (ML) models have been explored for signal recognition, their actual deployment has been limited so far due to challenges in acquiring labeled datasets. The emergence of Open Radio Access Network (O-RAN) architectures and open experimental testbed setups has enabled access to large-scale, unlabeled data through standardized interfaces, paving the way for unsupervised deep learning methods. These methods, unlike supervised approaches, require minimal labeled data and have shown promising results in domains such as computer vision and time-series processing. However, their application in wireless communications remains relatively unexplored. This survey aims to provide a comprehensive overview of unsupervised deep learning techniques for addressing key challenges for signal recognition in wireless communications, including automatic modulation classification (AMC), signal sensing, specific emitter identification (SEI), and anomaly detection. Specifically, we examine state-of-the-art approaches such as deep clustering, contrastive learning, autoencoder-based reconstruction, and generative models. Additionally, we discuss available open datasets and identify research opportunities to advance this field, leveraging the substantial successes of self-supervised learning in computer vision and natural language processing. By organizing the survey into two key complementary perspectives—wireless communication challenges and unsupervised deep learning solutions—this work provides a roadmap for researchers and practitioners seeking to develop innovative, data-efficient models for the next generation of AI-native wireless networks.
Ključne besede:anomaly detection, automatic modulation classification, radio signal recognition, signal sensing
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Poslano v recenzijo:13.11.2025
Datum sprejetja članka:15.12.2025
Datum objave:31.12.2025
Založnik:IEEE
Leto izida:2025
Št. strani:str. 217769-217798
Številčenje:Vol. 13
Izvor:ZDA
PID:20.500.12556/DiRROS-24984 Novo okno
UDK:004.8
ISSN pri članku:2169-3536
DOI:10.1109/ACCESS.2025.3647686 Novo okno
COBISS.SI-ID:263441667 Novo okno
Avtorske pravice:© 2025 The Authors.
Opomba:Nasl. z nasl. zaslona; Soavtorji: Blaž Bertalanič, Carolina Fortuna, Mihael Mohorčič; Opis vira z dne 5. 1. 2026;
Datum objave v DiRROS:07.01.2026
Število ogledov:56
Število prenosov:32
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:IEEE access
Založnik:Institute of Electrical and Electronics Engineers
ISSN:2169-3536
COBISS.SI-ID:519839513 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0016-2019
Naslov:Komunikacijska omrežja in storitve

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:31.12.2025
Vezano na:VoR

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Radio signals recognition with unsupervised deep learning: a survey
Ključne besede:zaznavanje nepravilnosti, prepoznavanje radijskega signala, zaznavanje signala


Nazaj