Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Uncovering early predictors of cerebral palsy through the application of machine learning : a case–control study
Avtorji:ID Rapuc, Sara (Avtor)
ID Stres, Blaž (Avtor)
ID Verdenik, Ivan (Avtor)
ID Lučovnik, Miha (Avtor)
ID Osredkar, Damjan (Avtor)
Datoteke:.pdf PDF - Predstavitvena datoteka, prenos (697,87 KB)
MD5: 6BA7C2B427ACB43F535C3A9DE8614D23
 
URL URL - Izvorni URL, za dostop obiščite https://bmjpaedsopen.bmj.com/content/8/1/e002800
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo UKC LJ - Univerzitetni klinični center Ljubljana
Povzetek:Objective Cerebral palsy (CP) is a group of neurological disorders with profound implications for children’s development. The identification of perinatal risk factors for CP may lead to improved preventive and therapeutic strategies. This study aimed to identify the early predictors of CP using machine learning (ML). Design This is a retrospective case–control study, using data from the two population-based databases, the Slovenian National Perinatal Information System and the Slovenian Registry of Cerebral Palsy. Multiple ML algorithms were evaluated to identify the best model for predicting CP. Setting This is a population-based study of CP and control subjects born into one of Slovenia’s 14 maternity wards. Participants A total of 382CP cases, born between 2002 and 2017, were identified. Controls were selected at a control-to-case ratio of 3:1, with matched gestational age and birth multiplicity. CP cases with congenital anomalies (n=44) were excluded from the analysis. A total of 338CP cases and 1014 controls were included in the study. Exposure 135 variables relating to perinatal and maternal factors. Main outcome measures Receiver operating characteristic (ROC), sensitivity and specificity. Results The stochastic gradient boosting ML model (271 cases and 812 controls) demonstrated the highest mean ROC value of 0.81 (mean sensitivity=0.46 and mean specificity=0.95). Using this model with the validation dataset (67 cases and 202 controls) resulted in an area under the ROC curve of 0.77 (mean sensitivity=0.27 and mean specificity=0.94). Conclusions Our final ML model using early perinatal factors could not reliably predict CP in our cohort. Future studies should evaluate models with additional factors, such as genetic and neuroimaging data
Ključne besede:early predictors, cerebral palsy
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:str. 1-7
Številčenje:Vol. 8, issue 1, [article no.] e002800
PID:20.500.12556/DiRROS-24655 Novo okno
UDK:616.3-053.2
ISSN pri članku:2399-9772
DOI:10.1136/bmjpo-2024-002800 Novo okno
COBISS.SI-ID:206047747 Novo okno
Opomba:Nasl. z nasl. zaslona; Opis vira z dne 2. 9. 2024;
Datum objave v DiRROS:10.12.2025
Število ogledov:93
Število prenosov:41
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:BMJ paediatrics open
Skrajšan naslov:BMJ paediatr. open
Založnik:BMJ Publishing Group Ltd
ISSN:2399-9772
COBISS.SI-ID:6387372 Novo okno

Gradivo je financirano iz projekta

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Univerzitetni klinični center Ljubljana
Številka projekta:20210101
Naslov:Dejavniki tveganja za cerebralno paralizo: analiza podatkov Slovenskega registra za cerebralno paralizo in Nacionalnega perinatalnega informacijskega sistema

Licence

Licenca:CC BY-NC 4.0, Creative Commons Priznanje avtorstva-Nekomercialno 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc/4.0/deed.sl
Opis:Licenca Creative Commons, ki prepoveduje komercialno uporabo, vendar uporabniki ne rabijo upravljati materialnih avtorskih pravic na izpeljanih delih z enako licenco.

Nazaj