Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:The use of machine learning in the diagnosis of kidney allograft rejection : current knowledge and applications
Avtorji:ID Belčič Mikič, Tanja (Avtor)
ID Arnol, Miha (Avtor)
Datoteke:.pdf PDF - Predstavitvena datoteka, prenos (736,04 KB)
MD5: B177A77F8EE49E939499B27F00B47B16
 
URL URL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2075-4418/14/22/2482
 
Jezik:Angleški jezik
Tipologija:1.02 - Pregledni znanstveni članek
Organizacija:Logo UKC LJ - Univerzitetni klinični center Ljubljana
Povzetek:Abstract: Kidney allograft rejection is one of the main limitations to long-term kidney transplant survival. The diagnostic gold standard for detecting rejection is a kidney biopsy, an invasive procedure that can often give imprecise results due to complex diagnostic criteria and high interobserver variability. In recent years, several additional diagnostic approaches to rejection have been investigated, some of them with the aid of machine learning (ML). In this review, we addressed studies that investigated the detection of kidney allograft rejection over the last decade using various ML algorithms. Various ML techniques were used in three main categories: (a) histopathologic assessment of kidney tissue with the aim to improve the diagnostic accuracy of a kidney biopsy, (b) assessment of gene expression in rejected kidney tissue or peripheral blood and the development of diagnostic classifiers based on these data, (c) radiologic assessment of kidney tissue using diffusion-weighted magnetic resonance imaging and the construction of a computer-aided diagnostic system. In histopathology, ML algorithms could serve as a support to the pathologist to avoid misclassifications and overcome interobserver variability. Diagnostic platforms based on biopsy-based transcripts serve as a supplement to a kidney biopsy, especially in cases where histopathologic diagnosis is inconclusive. ML models based on radiologic evaluation or gene signature in peripheral blood may be useful in cases where kidney biopsy is contraindicated in addition to other non-invasive biomarkers. The implementation of ML-based diagnostic methods is usually slow and undertaken with caution considering ethical and legal issues. In summary, the approach to the diagnosis of rejection should be individualized and based on all available diagnostic tools (including ML-based), leaving the responsibility for over- and under-treatment in the hands of the clinician.
Ključne besede:kidney transplantation, rejection, diagnosis, machine learning, kidney biopsy
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:str. [1]-20
Številčenje:Vol. 14, issue 22, [article no.] 2482
PID:20.500.12556/DiRROS-24580 Novo okno
UDK:616.61
ISSN pri članku:2075-4418
DOI:10.3390/diagnostics14222482 Novo okno
COBISS.SI-ID:218296579 Novo okno
Opomba:Nasl. z nasl. zaslona; Opis vira z dne 9. 12. 2024;
Datum objave v DiRROS:08.12.2025
Število ogledov:75
Število prenosov:36
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Diagnostics
Skrajšan naslov:Diagnostics
Založnik:MDPI AG
ISSN:2075-4418
COBISS.SI-ID:519963673 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P3-0323-2022
Naslov:Ledvične bolezni in nadomestna zdravljenja

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Nazaj