| Naslov: | Optimizing foamed glass production with machine learning |
|---|
| Avtorji: | ID Hribar, Uroš, Institut "Jožef Stefan" (Avtor) ID Stevanoska, Sintija, Institut "Jožef Stefan" (Avtor) ID Camacho Villalón, Christian Leonardo, Institut "Jožef Stefan" (Avtor) ID Spreitzer, Matjaž, Institut "Jožef Stefan" (Avtor) ID Koenig, Jakob, Institut "Jožef Stefan" (Avtor) ID Džeroski, Sašo, Institut "Jožef Stefan" (Avtor) |
| Datoteke: | URL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0264127525008792?via%3Dihub
PDF - Predstavitvena datoteka, prenos (1,51 MB) MD5: 6601A430FD2C782E745268E9713F234A Opis: The dataset from this study is available at https://doi.org/10.5281/zenodo.15023205. The code implementation for Task 2 and the multiobjective optimization algorithm (IBEA) are available at https://github.com/sintija-s/foaming-glass.
|
|---|
| Jezik: | Angleški jezik |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | IJS - Institut Jožef Stefan
|
|---|
| Povzetek: | Foamed glass is a lightweight material commonly used for insulation. However, optimizing its properties remains a challenge due to the large number of synthesis parameters involved in its production. While previous studies have investigated synthesis conditions, a comprehensive study applying machine learning approaches is lacking in the literature. In this paper, we apply machine learning methods, i.e., random forests of predictive clustering trees and a multilayer perceptron, training them on 124 experimental data points to accurately predict the apparent density and closed porosity of foamed glass. We then apply a multiobjective optimization algorithm together with the multilayer perceptron to find optimal values for the process parameters used in foamed glass production. Our results show that the combination of machine learning and multiobjective optimization is an effective proxy for the development of novel foamed glass materials. |
|---|
| Ključne besede: | process optimization, machine learning, foamed glass |
|---|
| Status publikacije: | Objavljeno |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Poslano v recenzijo: | 21.03.2025 |
|---|
| Datum sprejetja članka: | 23.07.2025 |
|---|
| Datum objave: | 30.07.2025 |
|---|
| Založnik: | Elsevier |
|---|
| Leto izida: | 2025 |
|---|
| Št. strani: | str. 1-8 |
|---|
| Številčenje: | Vol. 257 |
|---|
| Izvor: | Nizozemska |
|---|
| PID: | 20.500.12556/DiRROS-24178  |
|---|
| UDK: | 004.8+666.11+338.3 |
|---|
| ISSN pri članku: | 1873-4197 |
|---|
| DOI: | 10.1016/j.matdes.2025.114459  |
|---|
| COBISS.SI-ID: | 246226691  |
|---|
| Avtorske pravice: | © 2025 The Authors. |
|---|
| Opomba: | Nasl. z nasl. zaslona;
Opis vira z dne 21. 8. 2025;
|
|---|
| Datum objave v DiRROS: | 18.11.2025 |
|---|
| Število ogledov: | 178 |
|---|
| Število prenosov: | 75 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |