| Naslov: | Positive self-commutators of positive operators |
|---|
| Avtorji: | ID Drnovšek, Roman (Avtor) ID Kandić, Marko (Avtor) |
| Datoteke: | PDF - Predstavitvena datoteka, prenos (280,94 KB) MD5: 8588752116FD4D80DA269D761CD855FB
URL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s11117-025-01135-x
|
|---|
| Jezik: | Angleški jezik |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
|---|
| Povzetek: | We consider a positive operator $A$ on a Hilbert lattice such that its self-commutator $C = A^* A - A A^*$ is positive. If $A$ is also idempotent, then it is an orthogonal projection, and so $C = 0$. Similarly, if $A$ is power compact, then $C = 0$ as well. We prove that every positive compact central operator on a separable infinite-dimensional Hilbert lattice ${\mathcal H}$ is a self-commutator of a positive operator. We also show that every positive central operator on ${\mathcal H}$ is a sum of two positive self-commutators of positive operators. |
|---|
| Ključne besede: | Banach lattices, positive operators, commutators |
|---|
| Status publikacije: | Objavljeno |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Datum objave: | 01.07.2025 |
|---|
| Leto izida: | 2025 |
|---|
| Št. strani: | 17 str. |
|---|
| Številčenje: | Vol. 29, iss. 3, article no. 43 |
|---|
| PID: | 20.500.12556/DiRROS-23900  |
|---|
| UDK: | 517.9 |
|---|
| ISSN pri članku: | 1385-1292 |
|---|
| DOI: | 10.1007/s11117-025-01135-x  |
|---|
| COBISS.SI-ID: | 240577795  |
|---|
| Datum objave v DiRROS: | 20.10.2025 |
|---|
| Število ogledov: | 245 |
|---|
| Število prenosov: | 95 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |