| Naslov: | Weighted Padovan graphs |
|---|
| Avtorji: | ID Iršič Chenoweth, Vesna (Avtor) ID Klavžar, Sandi (Avtor) ID Rus, Gregor (Avtor) ID Tan, Elif (Avtor) |
| Datoteke: | PDF - Predstavitvena datoteka, prenos (720,09 KB) MD5: A4640CC8404E1A49793F08AE42884DCF
URL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0012365X25000652
|
|---|
| Jezik: | Angleški jezik |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
|---|
| Povzetek: | Weighted Padovan graphs $\Phi^{n}_{k}$, $n \geq 1$, $\lfloor \frac{n}{2} \rfloor \leq k \leq \lfloor \frac{2n-2}{3} \rfloor$, are introduced as the graphs whose vertices are all Padovan words of length $n$ with $k$ $1$s, two vertices being adjacent if one can be obtained from the other by replacing exactly one $01$ with a $10$. By definition, $\sum_k |V(\Phi^{n}_{k})|=P_{n+2}$, where $P_n$ is the $n$th Padovan number. Two families of graphs isomorphic to weighted Padovan graphs are presented. The order, the size, the degree, the diameter, the cube polynomial, and the automorphism group of weighted Padovan graphs are determined. It is also proved that they are median graphs. |
|---|
| Ključne besede: | Padovan sequence, weighted Padovan graph, integer partition, median graphs |
|---|
| Status publikacije: | Objavljeno |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Datum objave: | 01.07.2025 |
|---|
| Leto izida: | 2025 |
|---|
| Št. strani: | 12 str. |
|---|
| Številčenje: | Vol. 348, iss. 7, article no. 114457 |
|---|
| PID: | 20.500.12556/DiRROS-23893  |
|---|
| UDK: | 519.17 |
|---|
| ISSN pri članku: | 0012-365X |
|---|
| DOI: | 10.1016/j.disc.2025.114457  |
|---|
| COBISS.SI-ID: | 227687939  |
|---|
| Datum objave v DiRROS: | 20.10.2025 |
|---|
| Število ogledov: | 162 |
|---|
| Število prenosov: | 68 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |