| Naslov: | A model theoretic perspective on matrix rings |
|---|
| Avtorji: | ID Klep, Igor (Avtor) ID Tressl, Marcus (Avtor) |
| Datoteke: | PDF - Predstavitvena datoteka, prenos (367,37 KB) MD5: 19E4713AD70D9254F5E994F5C3041E9D
URL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s00209-024-03671-w
|
|---|
| Jezik: | Angleški jezik |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
|---|
| Povzetek: | In this paper natural necessary and sufficient conditions for quantifier elimination of matrix rings $M_n(K)$ in the language of rings expanded by two unary functions, naming the trace and transposition, are identified. This is used together with invariant theory to prove quantifier elimination when $K$ is an intersection of real closed fields. On the other hand, it is shown that finding a natural definable expansion with quantifier elimination of the theory of $M_n({\mathbb C})$ is closely related to the infamous simultaneous conjugacy problem in matrix theory. Finally, for various natural structures describing dimension-free matrices it is shown that no such elimination results can hold by establishing undecidability results. |
|---|
| Ključne besede: | model theory, quantifier elimination, matrix rings, trace, decidability, free analysis, simultaneous conjugacy problem |
|---|
| Status publikacije: | Objavljeno |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Datum objave: | 01.03.2025 |
|---|
| Leto izida: | 2025 |
|---|
| Št. strani: | 20 str. |
|---|
| Številčenje: | Vol. 309, iss. 3, article no. 45 |
|---|
| PID: | 20.500.12556/DiRROS-23892  |
|---|
| UDK: | 512 |
|---|
| ISSN pri članku: | 0025-5874 |
|---|
| DOI: | 10.1007/s00209-024-03671-w  |
|---|
| COBISS.SI-ID: | 225046275  |
|---|
| Datum objave v DiRROS: | 20.10.2025 |
|---|
| Število ogledov: | 193 |
|---|
| Število prenosov: | 87 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |