| Naslov: | Induced cycles vertex number and $(1,2)$-domination in cubic graphs |
|---|
| Avtorji: | ID Erveš, Rija (Avtor) ID Tepeh, Aleksandra (Avtor) |
| Datoteke: | PDF - Predstavitvena datoteka, prenos (1,79 MB) MD5: 328285D2CDB1536D5931222CDCF36A58
URL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0096300325004266
|
|---|
| Jezik: | Angleški jezik |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
|---|
| Povzetek: | A $(1,2)$-dominating set in a graph ▫$G$▫ is a set $S$ such that every vertex outside $S$ has at least one neighbor in $S$, and each vertex in $S$ has at least two neighbors in $S$. The $(1,2)$-domination number, $\gamma_{1, 2}(G)$, is the minimum size of such a set, while $c_{\rm ind}(G)$ is the cardinality of the largest vertex set in that induces one or more cycles. In this paper, we initiate the study of a relationship between these two concepts and discuss how establishing such a connection can contribute to solving a conjecture on the lower bound of $c_{\rm ind}(G)$ for cubic graphs. We also establish an upper bound on $c_{\rm ind}(G)$ for cubic graphs and characterize graphs that achieve this bound. |
|---|
| Ključne besede: | cubic graphs, (1, 2)-domination, induced 2-regular subgraphs, induced cycles vertex |
|---|
| Status publikacije: | Objavljeno |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Datum objave: | 01.02.2026 |
|---|
| Leto izida: | 2026 |
|---|
| Št. strani: | 7 str. |
|---|
| Številčenje: | Vol. 510, [article no.] 129700 |
|---|
| PID: | 20.500.12556/DiRROS-23831  |
|---|
| UDK: | 519.17 |
|---|
| ISSN pri članku: | 1873-5649 |
|---|
| DOI: | 10.1016/j.amc.2025.129700  |
|---|
| COBISS.SI-ID: | 247464963  |
|---|
| Opomba: |
|
|---|
| Datum objave v DiRROS: | 09.10.2025 |
|---|
| Število ogledov: | 240 |
|---|
| Število prenosov: | 115 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |