| Naslov: | Deformations of an affine Gorenstein toric pair |
|---|
| Avtorji: | ID Filip, Matej (Avtor) |
| Datoteke: | PDF - Predstavitvena datoteka, prenos (1,04 MB) MD5: ABACE1BC875B06B20514890BB13D569A
URL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0021869325005320
|
|---|
| Jezik: | Angleški jezik |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
|---|
| Povzetek: | We consider deformations of a pair $(X,\partial X)$, where $X$ is an affine toric Gorenstein variety and $\partial X$ is its boundary. We compute the tangent and obstruction space for the corresponding deformation functor and for an admissible lattice degree $m$ we construct the miniversal deformation of $(X,\partial X)$ in degrees $-km$, for all $k\in{\mathbb N}$. This in particular generalizes Altmann's construction of the miniversal deformation of an isolated Gorenstein toric singularity to an arbitrary non-isolated Gorenstein toric singularity. Moreover, we show that the irreducible components of the reduced miniversal deformation are in one to one correspondence with maximal Minkowski decompositions of the polytope $P\cap(m=1)$, where $P$ is the lattice polytope defining $X$. |
|---|
| Ključne besede: | deformation theory, toric singularities |
|---|
| Status publikacije: | Objavljeno |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Datum objave: | 01.02.2026 |
|---|
| Leto izida: | 2026 |
|---|
| Št. strani: | str. 419-445 |
|---|
| Številčenje: | Vol. 687 |
|---|
| PID: | 20.500.12556/DiRROS-23756  |
|---|
| UDK: | 512 |
|---|
| ISSN pri članku: | 0021-8693 |
|---|
| DOI: | 10.1016/j.jalgebra.2025.09.007  |
|---|
| COBISS.SI-ID: | 250487811  |
|---|
| Opomba: |
|
|---|
| Datum objave v DiRROS: | 01.10.2025 |
|---|
| Število ogledov: | 188 |
|---|
| Število prenosov: | 66 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |