Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Modeling hydrological functioning of karst aquifer systems in Slovenia using geomorphological features and random forest algorithm
Avtorji:ID Janža, Mitja (Avtor)
ID Hudovernik, Valter (Avtor)
ID Serianz, Luka (Avtor)
ID Stroj, Andrej (Avtor)
Datoteke:.pdf PDF - Predstavitvena datoteka, prenos (7,40 MB)
MD5: A3BAFC58CF092CB1B3DFD1E770598E0A
 
URL URL - Programska oprema, za dostop obiščite https://doi.org/10.1016/j.ejrh.2025.102774
 
URL URL - Priloga, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S2214581825006032?via%3Dihub#sec0140
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo GeoZS - Geološki zavod Slovenije
Povzetek:Study region: Slovenia Study focus: This study investigates the relationship between the hydrological functioning of karst aquifer systems and the geomorphological characteristics of their catchments. It is based on the analysis of discharge time series from 15 karst springs. Hydrograph analysis of these time series was used to estimate 11 hydrological parameters that characterize aquifer system functioning. A spatial analysis of morphological, geological, and hydrological data was carried out to assess 7 lumped geomorphological features of the catchments. These features (independent variables) and hydrological parameters (dependent variables) were used to develop random forest models for predicting the hydrological functioning of karst springs. New hydrological insights for the region: The developed methodological approach provides a basis for improved characterization and prediction of the hydrological functioning of ungauged karst systems. Groundwater availability in these systems is largely controlled by aquifer retention capacity and spring discharge variability. These characteristics can be inferred from hydrological parameters that can be predicted using the developed random forest models. Feature importance analysis indicated that catchment area, cave density, and slope gradient are the most important geomorphological features for predicting the hydrological characteristics of spring discharge.
Ključne besede:karst aquifer, random forest, machine learning, ungauged catchment, spring discharge, recession curve analysis
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum objave:19.09.2025
Založnik:Elsevier
Leto izida:2025
Št. strani:16 str.
Številčenje:vol. 62, [article no.] 102774
PID:20.500.12556/DiRROS-23666 Novo okno
UDK:556.3
ISSN pri članku:2214-5818
DOI:10.1016/j.ejrh.2025.102774 Novo okno
COBISS.SI-ID:249995267 Novo okno
Opomba:
Datum objave v DiRROS:22.10.2025
Število ogledov:175
Število prenosov:111
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Journal of hydrology : Regional studies.
Založnik:Elsevier B.V.
ISSN:2214-5818
COBISS.SI-ID:520385561 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P1-0020-2020
Naslov:Podzemne vode in geokemija

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Nazaj