Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Skin cancer segmentation and classification by implementing a hybrid FrCN-(U-NeT) technique with machine learning
Avtorji:ID Thapar, Puneet (Avtor)
ID Rakhra, Manik (Avtor)
ID Prashar, Deepak (Avtor)
ID Mršić, Leo (Avtor)
ID Khan, Arfat Ahmad (Avtor)
ID Kadry, Seifedine (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0322659
 
.pdf PDF - Predstavitvena datoteka, prenos (1,31 MB)
MD5: 0CB879CA1F20E8E80EE5E045D187A466
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo RUDOLFOVO - Rudolfovo – Znanstveno in tehnološko središče Novo mesto
Povzetek:Skin cancer is a severe and rapidly advancing condition that can be impacted by multiple factors, including alcohol and tobacco use, allergies, infections, physical activity, exposure to UV light, viral infections, and the effects of climate change. While the steep death tolls continue rising at an alarming rate, lack of symptoms recognition and its preventive measures further worsen the case. In this article, we employ the ISBI-2017 dataset to present an improved FrCN-based hybrid image segmentation method with U-Net to improve detection performance. This paper proposes a hybrid approach using the FrCN-(U-Net) image segmentation technique to enhance results compared to an advanced method for detecting skin cancer types, such as Benign or Melanoma. The classification phase is then handled using the R-CNN algorithm. Our model shows better performance in both training and testing accuracy than any other existing approaches. The results show that the combined method is effective in enhancing early disease diagnosis, which in turn improves treatment outcomes and prognosis. This paper presents an alternative technique for skin cancer detection, which can serve as a guide for clinical practices and public health strategies on how to lower skin-cancer-related deaths.
Ključne besede:skin tumors, cutaneous melanoma, lesions, imaging techniques, cancel detection and diagnosis, melanoma, preprocessing, melignant tumors
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum objave:02.06.2025
Leto izida:2025
Št. strani:str. 1-22
Številčenje:Vol. , iss.
PID:20.500.12556/DiRROS-22652 Novo okno
UDK:004.85:004.92:616-006
ISSN pri članku:1932-6203
DOI:10.1371/journal.pone.0322659 Novo okno
COBISS.SI-ID:239363331 Novo okno
Avtorske pravice:© 2025 Thapar et al.
Opomba:Soavtorji: Manik Rakhra, Deepak Prashar, Leo Mrsic, Arfat Ahmad Khan, Seifedine Kadry; Nasl. z nasl. zaslona; Opis vira z dne 14. 6. 2025;
Datum objave v DiRROS:19.06.2025
Število ogledov:453
Število prenosov:260
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:PloS one
Založnik:Public Library of Science
ISSN:1932-6203
COBISS.SI-ID:2005896 Novo okno

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:kožni rak, kožni melanom, lezije, slikovne tehnike, odkrivanje in diagnosticiranje raka, melanom, predobdelava, maligni tumorji


Nazaj