Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Graph Convolutional Networks for Predicting Cancer Outcomes and Stage : a focus on cGAS-STING pathway activation
Avtorji:ID Sokač, Mateo (Avtor)
ID Skračić, Borna (Avtor)
ID Kučak, Danijel (Avtor)
ID Mršić, Leo (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2504-4990/6/3/100
 
.pdf PDF - Predstavitvena datoteka, prenos (2,05 MB)
MD5: B307E0E3A9A96ED45AE9D3801F61F6C8
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo RUDOLFOVO - Rudolfovo – Znanstveno in tehnološko središče Novo mesto
Povzetek:The study presented in this paper evaluated gene expression profiles from The Cancer Genome Atlas (TCGA). To reduce complexity, we focused on genes in the cGAS–STING pathway, crucial for cytosolic DNA detection and immune response. The study analyzes three clinical variables: disease-specific survival (DSS), overall survival (OS), and tumor stage. To effectively utilize the high-dimensional gene expression data, we needed to find a way to project these data meaningfully. Since gene pathways can be represented as graphs, a novel method of presenting genomics data using graph data structure was employed, rather than the conventional tabular format. To leverage the gene expression data represented as graphs, we utilized a graph convolutional network (GCN) machine learning model in conjunction with the genetic algorithm optimization technique. This allowed for obtaining an optimal graph representation topology and capturing important activations within the pathway for each use case, enabling a more insightful analysis of the cGAS–STING pathway and its activations across different cancer types and clinical variables. To tackle the problem of unexplainable AI, graph visualization alongside the integrated gradients method was employed to explain the GCN model’s decision-making process, identifying key nodes (genes) in the cGAS–STING pathway. This approach revealed distinct molecular mechanisms, enhancing interpretability. This study demonstrates the potential of GCNs combined with explainable AI to analyze gene expression, providing insights into cancer progression. Further research with more data is needed to validate these findings.
Ključne besede:cGAS–STING, graph-convolutional-network, graphs, cancer, pan-cancer, machine learning, NGS
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum objave:11.09.2024
Založnik:MDPI
Leto izida:2024
Št. strani:str. 2033–2048
Številčenje:Vol. 6, iss. 3
PID:20.500.12556/DiRROS-22648 Novo okno
UDK:004.85:616.9
ISSN pri članku:2504-4990
DOI:10.3390/make6030100 Novo okno
COBISS.SI-ID:207936515 Novo okno
Avtorske pravice:© 2024 by the authors
Opomba:Nasl. z nasl. zaslona; Opis vira z dne 17. 9. 2024; Soavtorji: Borna Skračić, Danijel Kučak and Leo Mršić;
Datum objave v DiRROS:09.09.2025
Število ogledov:308
Število prenosov:150
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Machine learning and knowledge extraction
Založnik:MDPI
ISSN:2504-4990
COBISS.SI-ID:1537706179 Novo okno

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:cGAS–STING, grafična konvolucijska mreža, grafi, rak, pan-rak, strojno učenje, NGS


Nazaj