Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Automated grading through contrastive learning : a gradient analysis and feature ablation approach
Avtorji:ID Sokač, Mateo (Avtor)
ID Fabijanić, Mario (Avtor)
ID Mekterović, Igor (Avtor)
ID Mršić, Leo (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2504-4990/7/2/41
 
.pdf PDF - Predstavitvena datoteka, prenos (4,12 MB)
MD5: DB4D2106BCD7DABC77590E5E83493782
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo RUDOLFOVO - Rudolfovo – Znanstveno in tehnološko središče Novo mesto
Povzetek:As programming education becomes increasingly complex, grading student code has become a challenging task. Traditional methods, such as dynamic and static analysis, offer foundational approaches but often fail to provide granular insights, leading to inconsistencies in grading and feedback. This study addresses the limitations of these methods by integrating contrastive learning with explainable AI techniques to assess SQL code submissions. We employed contrastive learning to differentiate between student and correct SQL solutions, projecting them into a high-dimensional latent space, and used the Frobenius norm to measure the distance between these representations. This distance was used to predict the percentage of points deducted from each student’s solution. To enhance interpretability, we implemented feature ablation and integrated gradients, which provide insights into the specific tokens in student code that impact the grading outcomes. Our findings indicate that this approach improves the accuracy, consistency, and transparency of automated grading, aligning more closely with human grading standards. The results suggest that this framework could be a valuable tool for automated programming assessment systems, offering clear, actionable feedback and making machine learning models in educational contexts more interpretable and effective.
Ključne besede:automated programming assessment systems (APASs), contrastive learning, explainable AI, feature ablation, integrated gradients, machine learning in education, natural language processing (NLP)
Verzija publikacije:Objavljena publikacija
Datum objave:29.04.2025
Založnik:MDPI
Leto izida:2025
Št. strani:str. 1-24
Številčenje:Vol. 7, iss. 2
PID:20.500.12556/DiRROS-22642 Novo okno
UDK:004.85:37
ISSN pri članku:2504-4990
DOI:10.3390/make7020041 Novo okno
COBISS.SI-ID:239074051 Novo okno
Avtorske pravice:© 2025 by the authors
Opomba:Nasl. z nasl. zaslona; Opis vira z dne 11. 6. 2025; Soavtorji: Mario Fabijanić, Igor Mekterović and Leo Mršić;
Datum objave v DiRROS:09.09.2025
Število ogledov:304
Število prenosov:151
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Machine learning and knowledge extraction
Založnik:MDPI
ISSN:2504-4990
COBISS.SI-ID:1537706179 Novo okno

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:avtomatizirani sistemi za ocenjevanje programerskih nalog, kontrastno učenje, razložljiva umetna inteligenca, integrirani gradienti, strojno učenje v izobraževanju, strojno učenje, obdelava naravnega jezika


Nazaj