Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Enhanced strain gradient crystal plasticity theory : Evolution of the length scale during deformation
Avtorji:ID Lame Jouybari, Amirhossein, Institut "Jožef Stefan" (Avtor)
ID El Shawish, Samir, Institut "Jožef Stefan" (Avtor)
ID Cizelj, Leon, Institut "Jožef Stefan" (Avtor)
Datoteke:.pdf PDF - Predstavitvena datoteka, prenos (9,51 MB)
MD5: 38F8CF7F968927CED74BA6AFCC78329B
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo IJS - Institut Jožef Stefan
Povzetek:An Enhanced Strain Gradient Crystal Plasticity (Enhanced-SGCP) theory, based on the quadratic energy contribution of the Nye tensor, is developed within a thermodynamically consistent framework to accurately capture shear band formation in terms of slip and kink bands within the microstructure. The higher-order modulus in the theory is intrinsically linked to the evolving microstructural properties during applied loading, introducing a physical length scale that governs shear band formation and evolution. It is demonstrated that the Classical-SGCP model (a Gurtin-type nonlocal theory) leads to an increasing width of localization bands, which eventually disappear, resulting in homogeneous deformation within the microstructure. This effect arises from the excessive annihilation of geometrically necessary dislocations, which suppresses localization and may lead to physically meaningless results in the formation of shear bands. To address this issue, the proposed Enhanced-SGCP theory effectively preserves the shear band width and maintains localization throughout the loading process by reducing the higher-order modulus associated with the sweeping away of hardening defects and local softening mechanism. Furthermore, the theory establishes a direct link between lattice curvature in kink bands and the Nye tensor, demonstrating that the kink bands transform into slip bands. Consequently, the Enhanced-SGCP theory breaks the equivalence between slip and kink bands, providing a more accurate physical representation of strain localization mechanisms in irradiated materials. To computationally solve the governing balance equations, a fixed-point algorithm based on the fast Fourier Transform (FFT) method is developed. To validate the algorithm, an analytical solution for the Enhanced-SGCP theory is derived. High-resolution single-crystal simulations confirm that the kink bands transition into regularized slip bands through different physical length scales within the proposed Enhanced-SGCP framework. Furthermore, high resolution simulations are performed on two-dimensional and three-dimensional polycrystalline aggregates, considering different length scales and various higher-order interface conditions at the grain boundaries. The results reveal that the strain gradient effects during applied loading are saturated and stabilized by the Enhanced-SGCP theory, ensuring sustained localization. These findings highlight the capability of the proposed Enhanced-SGCP theory and the developed FFT-algorithm to provide a robust and physically consistent framework for modeling strain localization in crystalline materials. The proposed model offers significant improvements over classical approaches, particularly in preserving localization phenomena and accurately describing the interplay between slip and kink bands.
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Poslano v recenzijo:18.02.2025
Datum objave:19.05.2025
Založnik:Elsevier
Leto izida:2025
Št. strani:str. 1-33
Številčenje:Vol. 190, Art. 104351
Izvor:Nizozemska
PID:20.500.12556/DiRROS-22527 Novo okno
UDK:621.039
ISSN pri članku:0749-6419
DOI:10.1016/j.ijplas.2025.104351 Novo okno
COBISS.SI-ID:237457411 Novo okno
Avtorske pravice:© 2025 The Authors.
Datum objave v DiRROS:29.05.2025
Število ogledov:488
Število prenosov:155
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:International journal of plasticity
Skrajšan naslov:Int. j. plast.
Založnik:Pergamon Press
ISSN:0749-6419
COBISS.SI-ID:25658880 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0026
Naslov:Reaktorska tehnika

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Program financ.:Young Researcher Grant

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:19.05.2025
Vezano na:VoR

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:jedrska tehnika, polikristalini


Nazaj