Naslov: | On regular graphs with Šoltés vertices |
---|
Avtorji: | ID Bašić, Nino (Avtor) ID Knor, Martin (Avtor) ID Škrekovski, Riste (Avtor) |
Datoteke: | PDF - Predstavitvena datoteka, prenos (457,76 KB) MD5: C122CCC75F1CA8729D5422D8EDD1DF59
URL - Izvorni URL, za dostop obiščite https://amc-journal.eu/index.php/amc/article/view/3085
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
RUDOLFOVO - Rudolfovo – Znanstveno in tehnološko središče Novo mesto
|
---|
Povzetek: | Let $W(G)$ be the Wiener index of a graph $G$. We say that a vertex $v \in V(G)$ is a Šoltés vertex in $G$ if $W(G - v) = W(G)$, i.e. the Wiener index does not change if the vertex $v$ is removed. In 1991, Šoltés posed the problem of identifying all connected graphs ▫$G$▫ with the property that all vertices of $G$ are Šoltés vertices. The only such graph known to this day is $C_{11}$. As the original problem appears to be too challenging, several relaxations were studied: one may look for graphs with at least $k$ Šoltés vertices; or one may look for $\alpha$-Šoltés graphs, i.e. graphs where the ratio between the number of Šoltés vertices and the order of the graph is at least $\alpha$. Note that the original problem is, in fact, to find all $1$-Šoltés graphs. We intuitively believe that every $1$-Šoltés graph has to be regular and has to possess a high degree of symmetry. Therefore, we are interested in regular graphs that contain one or more Šoltés vertices. In this paper, we present several partial results. For every $r\ge 1$ we describe a construction of an infinite family of cubic $2$-connected graphs with at least $2^r$ Šoltés vertices. Moreover, we report that a computer search on publicly available collections of vertex-transitive graphs did not reveal any $1$-Šoltés graph. We are only able to provide examples of large $\frac{1}{3}$-Šoltés graphs that are obtained by truncating certain cubic vertex-transitive graphs. This leads us to believe that no $1$-Šoltés graph other than $C_{11}$ exists. |
---|
Ključne besede: | Šoltés problem, Wiener index, regular graphs, cubic graphs, Cayley graph, Šoltés vertex |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 01.01.2025 |
---|
Leto izida: | 2025 |
---|
Št. strani: | 20 str. |
---|
Številčenje: | Vol. 25, no. 2, article no. P2.01 |
---|
PID: | 20.500.12556/DiRROS-22051  |
---|
UDK: | 519.17 |
---|
ISSN pri članku: | 1855-3966 |
---|
DOI: | 10.26493/1855-3974.3085.3ea  |
---|
COBISS.SI-ID: | 232776195  |
---|
Opomba: |
|
---|
Datum objave v DiRROS: | 17.04.2025 |
---|
Število ogledov: | 151 |
---|
Število prenosov: | 57 |
---|
Metapodatki: |  |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: |  |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |