| Naslov: | On the diagonal of Riesz operators on Banach lattices |
|---|
| Avtorji: | ID Drnovšek, Roman (Avtor) ID Kandić, Marko (Avtor) |
| Datoteke: | PDF - Predstavitvena datoteka, prenos (589,79 KB) MD5: 1A99C08F98B1932D5070979D4E06B2EC
URL - Izvorni URL, za dostop obiščite https://www.tandfonline.com/doi/abs/10.2989/16073606.2023.2287829
|
|---|
| Jezik: | Angleški jezik |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
|---|
| Povzetek: | This paper extends the well-known Ringrose theory for compact operators to polynomially Riesz operators on Banach spaces. The particular case of an ideal-triangularizable Riesz operator on an order continuous Banach lattice yields that the spectrum of such operator lies on its diagonal, which motivates the systematic study of an abstract diagonal of a regular operator on an order complete vector lattice $E$. We prove that the class $\mathscr D$ of regular operators for which the diagonal coincides with the atomic diagonal is always a band in $\mathcal L_r(E)$, which contains the band of abstract integral operators. If $E$ is also a Banach lattice, then $\mathscr D$ contains positive Riesz and positive AM-compact operators. |
|---|
| Ključne besede: | vector lattices, Banach lattices, Riesz operators, diagonal of an operator |
|---|
| Status publikacije: | Objavljeno |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Datum objave: | 01.01.2024 |
|---|
| Leto izida: | 2024 |
|---|
| Št. strani: | str. S137-S151 |
|---|
| Številčenje: | Vol. 47, iss. sup1 |
|---|
| PID: | 20.500.12556/DiRROS-21315  |
|---|
| UDK: | 517.9 |
|---|
| ISSN pri članku: | 1607-3606 |
|---|
| DOI: | 10.2989/16073606.2023.2287829  |
|---|
| COBISS.SI-ID: | 188345347  |
|---|
| Datum objave v DiRROS: | 24.01.2025 |
|---|
| Število ogledov: | 593 |
|---|
| Število prenosov: | 336 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |