| Naslov: | Optimal strategies in fractional games: vertex cover and domination |
|---|
| Avtorji: | ID Bujtás, Csilla (Avtor) ID Rote, Günter (Avtor) ID Tuza, Zsolt (Avtor) |
| Datoteke: | PDF - Predstavitvena datoteka, prenos (468,61 KB) MD5: 7D72CE182F954FDEED4ED7ACDE0307FF
URL - Izvorni URL, za dostop obiščite https://amc-journal.eu/index.php/amc/article/view/2771
|
|---|
| Jezik: | Angleški jezik |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
|---|
| Povzetek: | In a hypergraph ${\cal H}=(V,{\cal E})$ with vertex set $V$ and edge set ${\cal E}$, a real-valued function $f: V \to [0, 1]$ is a fractional transversal if $\sum_{v\in E} f(v) \ge 1$ for every edge $E \in {\cal E}$. Its size is $|f| := \sum_{v \in V} f(v)$, and the fractional transversal number $\tau^\ast({\cal H})$ is the smallest possible $|f|$. We consider a game scenario where two players have opposite goals, one of them trying to minimize and the other to maximize the size of a fractional transversal constructed incrementally. We prove that both players have strategies to achieve their common optimum, and they can reach their goals using rational weights. |
|---|
| Ključne besede: | fractional vertex cover, fractional transversal game, fractional domination game |
|---|
| Status publikacije: | Objavljeno |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Datum objave: | 01.01.2024 |
|---|
| Leto izida: | 2024 |
|---|
| Št. strani: | 19 str. |
|---|
| Številčenje: | Vol. 24, no. 3, article no. P3.05 |
|---|
| PID: | 20.500.12556/DiRROS-21312  |
|---|
| UDK: | 519.17 |
|---|
| ISSN pri članku: | 1855-3966 |
|---|
| DOI: | 10.26493/1855-3974.2771.4df  |
|---|
| COBISS.SI-ID: | 202315011  |
|---|
| Opomba: |
|
|---|
| Datum objave v DiRROS: | 24.01.2025 |
|---|
| Število ogledov: | 646 |
|---|
| Število prenosov: | 325 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |