Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Using machine learning methods to assess module performance contribution in modular optimization frameworks
Avtorji:ID Kostovska, Ana, Institut "Jožef Stefan" (Avtor)
ID Vermetten, Diederick (Avtor)
ID Korošec, Peter, Institut "Jožef Stefan" (Avtor)
ID Džeroski, Sašo, Institut "Jožef Stefan" (Avtor)
ID Doerr, Carola (Avtor)
ID Eftimov, Tome, Institut "Jožef Stefan" (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://direct.mit.edu/evco/article-abstract/doi/10.1162/evco_a_00356/123899/Using-Machine-Learning-Methods-to-Assess-Module?redirectedFrom=fulltext
 
.pdf PDF - Predstavitvena datoteka, prenos (1,37 MB)
MD5: 7D7A574A260449EFC752BD8129275844
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo IJS - Institut Jožef Stefan
Povzetek:Modular algorithm frameworks not only allow for combinations never tested in manually selected algorithm portfolios, but they also provide a structured approach to assess which algorithmic ideas are crucial for the observed performance of algorithms. In this study, we propose a methodology for analyzing the impact of the different modules on the overall performance. We consider modular frameworks for two widely used families of derivative-free black-box optimization algorithms, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and differential evolution (DE). More specifically, we use performance data of 324 modCMA-ES and 576 modDE algorithm variants (with each variant corresponding to a specific configuration of modules) obtained on the 24 BBOB problems for 6 different runtime budgets in 2 dimensions. Our analysis of these data reveals that the impact of individual modules on overall algorithm performance varies significantly. Notably, among the examined modules, the elitism module in CMA-ES and the linear population size reduction module in DE exhibit the most significant impact on performance. Furthermore, our exploratory data analysis of problem landscape data suggests that the most relevant landscape features remain consistent regardless of the configuration of individual modules, but the influence that these features have on regression accuracy varies. In addition, we apply classifiers that exploit feature importance with respect to the trained models for performance prediction and performance data, to predict the modular configurations of CMA-ES and DE algorithm variants. The results show that the predicted configurations do not exhibit a statistically significant difference in performance compared to the true configurations, with the percentage varying depending on the setup (from 49.1% to 95.5% for modCMA and 21.7% to 77.1% for DE)
Ključne besede:evolutionary computation, modular algorithm frameworks, DE
Status publikacije:Objavljeno
Verzija publikacije:Recenzirani rokopis
Poslano v recenzijo:16.07.2023
Datum sprejetja članka:03.07.2024
Datum objave:17.10.2024
Založnik:Massachusetts Institute of Technology
Leto izida:2024
Št. strani:31 str.
Izvor:ZDA
PID:20.500.12556/DiRROS-20968 Novo okno
UDK:004.85
ISSN pri članku:1530-9304
DOI:10.1162/evco_a_00356 Novo okno
COBISS.SI-ID:206993155 Novo okno
Avtorske pravice:© 2024 Massachusetts Institute of Technology
Opomba:Nasl. z nasl. zaslona; Opis vira z dne 10. 9. 2024;
Datum objave v DiRROS:11.12.2024
Število ogledov:79
Število prenosov:30
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Evolutionary computation
Skrajšan naslov:Evol. comput.
Založnik:MIT Press, OCLC
ISSN:1530-9304
COBISS.SI-ID:18282791 Novo okno

Gradivo je financirano iz projekta

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0098
Naslov:Računalniške strukture in sistemi

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0103
Naslov:Tehnologije znanja

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J2-4460
Naslov:Auto-OPT: Avtomatizirana izbira in konfiguracija eno-kriterijskih zveznih optimizacijskih algoritmov

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Program financ.:young research grant
Številka projekta:PR-09773

Financer:Drugi - Drug financer ali več financerjev
Program financ.:BI-FR/23-24-PROTEUS001
Številka projekta:PR-12040

Financer:EC - European Commission
Program financ.:H2020
Številka projekta:952215
Naslov:Foundations of Trustworthy AI - Integrating Reasoning, Learning and Optimization
Akronim:TAILOR

Financer:Drugi - Drug financer ali več financerjev
Program financ.:ANR-22-ERCS-0003-01
Akronim:VARIATION

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:17.10.2024
Vezano na:recenzirani rokopis

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:mreže, algoritmi


Nazaj