Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Optimizing real-time MI-BCI performance in post-stroke patients : impact of time window duration on classification accuracy and responsiveness
Avtorji:ID Miladinović, Aleksandar (Avtor)
ID Accardo, Agostino (Avtor)
ID Jarmolowska, Joanna (Avtor)
ID Marušič, Uroš (Avtor)
ID Ajčević, Miloš (Avtor)
Datoteke:.pdf PDF - Predstavitvena datoteka, prenos (3,37 MB)
MD5: 99452FE06A9F70A772AE0A7E6A4B9440
 
URL URL - Izvorni URL, za dostop obiščite https://www.mdpi.com/1424-8220/24/18/6125
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo ZRS Koper - Znanstveno-raziskovalno središče Koper / Centro di Ricerche Scientifiche Capodistria
Povzetek:Brain–computer interfaces (BCIs) are promising tools for motor neurorehabilitation. Achieving a balance between classification accuracy and system responsiveness is crucial for real-time applications. This study aimed to assess how the duration of time windows affects performance, specifically classification accuracy and the false positive rate, to optimize the temporal parameters of MI-BCI systems. We investigated the impact of time window duration on classification accuracy and false positive rate, employing Linear Discriminant Analysis (LDA), Multilayer Perceptron (MLP), and Support Vector Machine (SVM) on data acquired from six post-stroke patients and on the external BCI IVa dataset. EEG signals were recorded and processed using the Common Spatial Patterns (CSP) algorithm for feature extraction. Our results indicate that longer time windows generally enhance classification accuracy and reduce false positives across all classifiers, with LDA performing the best. However, to maintain the real-time responsiveness, crucial for practical applications, a balance must be struck. The results suggest an optimal time window of 1–2 s, offering a trade-off between classification performance and excessive delay to guarantee the system responsiveness. These findings underscore the importance of temporal optimization in MI-BCI systems to improve usability in real rehabilitation scenarios.
Ključne besede:BCI, EEG, classification, motor imagery
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Poslano v recenzijo:10.09.2024
Datum sprejetja članka:19.09.2024
Datum objave:22.09.2024
Leto izida:2024
Št. strani:13 str.
Številčenje:Vol. 24, no. 18
PID:20.500.12556/DiRROS-20588 Novo okno
UDK:612.8:004.891
ISSN pri članku:1424-8220
DOI:10.3390/s24186125 Novo okno
COBISS.SI-ID:212716035 Novo okno
Avtorske pravice:© 2024 by the authors
Opomba:Nasl. z nasl. zaslona; Opis vira z dne 23. 10. 2024;
Datum objave v DiRROS:23.10.2024
Število ogledov:108
Število prenosov:473
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Sensors
Skrajšan naslov:Sensors
Založnik:MDPI
ISSN:1424-8220
COBISS.SI-ID:10176278 Novo okno

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:22.09.2024

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:RMV, EEG, klasifikacija, motorična predstava


Nazaj