| Naslov: | A new approach to universal $F$-inverse monoids in enriched signature |
|---|
| Avtorji: | ID Kudryavtseva, Ganna (Avtor) ID Lemut Furlani, Ajda (Avtor) |
| Datoteke: | PDF - Predstavitvena datoteka, prenos (347,64 KB) MD5: 8BC86DECDD2A8C17712D8BE633DC1036
URL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s00025-024-02291-4
|
|---|
| Jezik: | Angleški jezik |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
|---|
| Povzetek: | We show that the universal $X$-generated $F$-inverse monoid $F(G)$, where ▫$G$▫ is an $X$-generated group, introduced by Auinger, Szendrei and the first-named author, arises as a quotient inverse monoid of the Margolis-Meakin expansion $M(G, X\cup \overline{G})$ of $G$, with respect to the extended generating set $X\cup \overline{G}$, where $\overline{G}$ is a bijective copy of $G$ which encodes the ▫$m$▫-operation in $F(G)$. The construction relies on a certain dual-closure operator on the semilattice of all finite and connected subgraphs containing the origin of the Cayley graph ${\rm Cay}(G, X\cup {\overline{G}})$ and leads to a new and simpler proof of the universal property of $F(G)$. |
|---|
| Ključne besede: | inverse monoid, F-inverse monoid, Margolis-Meakin expansion, group presentation, Cayley graph of a group, closure operator, dual-closure operator, partial action, partial action product |
|---|
| Status publikacije: | Objavljeno |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Datum objave: | 01.11.2024 |
|---|
| Leto izida: | 2024 |
|---|
| Št. strani: | 13 str. |
|---|
| Številčenje: | Vol. 79, iss. 7, [article no.] 260 |
|---|
| PID: | 20.500.12556/DiRROS-20546  |
|---|
| UDK: | 512 |
|---|
| ISSN pri članku: | 1422-6383 |
|---|
| DOI: | 10.1007/s00025-024-02291-4  |
|---|
| COBISS.SI-ID: | 211681795  |
|---|
| Opomba: |
|
|---|
| Datum objave v DiRROS: | 21.10.2024 |
|---|
| Število ogledov: | 642 |
|---|
| Število prenosov: | 326 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |