Naslov: | A new approach to universal $F$-inverse monoids in enriched signature |
---|
Avtorji: | ID Kudryavtseva, Ganna (Avtor) ID Lemut Furlani, Ajda (Avtor) |
Datoteke: | PDF - Predstavitvena datoteka, prenos (347,64 KB) MD5: 8BC86DECDD2A8C17712D8BE633DC1036
URL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s00025-024-02291-4
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
---|
Povzetek: | We show that the universal $X$-generated $F$-inverse monoid $F(G)$, where ▫$G$▫ is an $X$-generated group, introduced by Auinger, Szendrei and the first-named author, arises as a quotient inverse monoid of the Margolis-Meakin expansion $M(G, X\cup \overline{G})$ of $G$, with respect to the extended generating set $X\cup \overline{G}$, where $\overline{G}$ is a bijective copy of $G$ which encodes the ▫$m$▫-operation in $F(G)$. The construction relies on a certain dual-closure operator on the semilattice of all finite and connected subgraphs containing the origin of the Cayley graph ${\rm Cay}(G, X\cup {\overline{G}})$ and leads to a new and simpler proof of the universal property of $F(G)$. |
---|
Ključne besede: | inverse monoid, F-inverse monoid, Margolis-Meakin expansion, group presentation, Cayley graph of a group, closure operator, dual-closure operator, partial action, partial action product |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 01.11.2024 |
---|
Leto izida: | 2024 |
---|
Št. strani: | 13 str. |
---|
Številčenje: | Vol. 79, iss. 7, [article no.] 260 |
---|
PID: | 20.500.12556/DiRROS-20546 |
---|
UDK: | 512 |
---|
ISSN pri članku: | 1422-6383 |
---|
DOI: | 10.1007/s00025-024-02291-4 |
---|
COBISS.SI-ID: | 211681795 |
---|
Opomba: |
|
---|
Datum objave v DiRROS: | 21.10.2024 |
---|
Število ogledov: | 136 |
---|
Število prenosov: | 56 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |