Naslov: | Application of a metric for complex polynomials to bounded modification of planar Pythagorean-hodograph curves |
---|
Avtorji: | ID Farouki, Rida A. M. T. (Avtor) ID Knez, Marjetka (Avtor) ID Vitrih, Vito (Avtor) ID Žagar, Emil (Avtor) |
Datoteke: | PDF - Predstavitvena datoteka, prenos (3,60 MB) MD5: 792AD47B41AE144A4396EE0D17E722A7
URL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0377042724004849
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IMFM - Inštitut za matematiko, fiziko in mehaniko
|
---|
Povzetek: | By interpreting planar polynomial curves as complex-valued functions of a real parameter, an inner product, norm, metric function, and the notion of orthogonality may be defined for such curves. This approach is applied to the complex pre-image polynomials that generate planar Pythagorean-hodograph (PH) curves, to facilitate the implementation of bounded modifications of them that preserve their PH nature. The problems of bounded modifications under the constraint of fixed curve end points and end tangent directions, and of increasing the arc length of a PH curve by a prescribed amount, are also addressed. |
---|
Ključne besede: | complex polynomials, inner product, norm, metric, Pythagorean-hodograph curves, bounded modification |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 01.03.2025 |
---|
Leto izida: | 2025 |
---|
Št. strani: | 16 str. |
---|
Številčenje: | Vol. 456, [article no.] 116235 |
---|
PID: | 20.500.12556/DiRROS-20330-9ec16288-caa2-b6a2-2c48-7752cc9fa8a7 |
---|
UDK: | 519.6 |
---|
ISSN pri članku: | 0377-0427 |
---|
DOI: | 10.1016/j.cam.2024.116235 |
---|
COBISS.SI-ID: | 206109955 |
---|
Opomba: |
|
---|
Datum objave v DiRROS: | 04.09.2024 |
---|
Število ogledov: | 180 |
---|
Število prenosov: | 738 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |