Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:DELWAVE 1.0 : deep learning surrogate model of surface wave climate in the Adriatic Basin
Avtorji:ID Mlakar, Peter (Avtor)
ID Ricchi, Antonio (Avtor)
ID Carniel, Sandro (Avtor)
ID Bonaldo, Davide (Avtor)
ID Ličer, Matjaž (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://doi.org/10.5194/gmd-17-4705-2024
 
.pdf PDF - Predstavitvena datoteka, prenos (9,04 MB)
MD5: 8D76F57D675F473AE94CF49BC887B45B
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo NIB - Nacionalni inštitut za biologijo
Povzetek:We propose a new point-prediction model, the DEep Learning WAVe Emulating model (DELWAVE), which successfully emulates the behaviour of a numerical surface ocean wave model (Simulating WAves Nearshore, SWAN) at a sparse set of locations, thus enabling numerically cheap large-ensemble prediction over synoptic to climate timescales. DELWAVE was trained on COSMO-CLM (Climate Limited-area Model) and SWAN input data during the period of 1971–1998, tested during 1998–2000, and cross-evaluated over the far-future climate time window of 2071–2100. It is constructed from a convolutional atmospheric encoder block, followed by a temporal collapse block and, finally, a regression block. DELWAVE reproduces SWAN model significant wave heights with a mean absolute error (MAE) of between 5 and 10 cm, mean wave directions with a MAE of 10–25°, and a mean wave period with a MAE of 0.2 s. DELWAVE is able to accurately emulate multi-modal mean wave direction distributions related to dominant wind regimes in the basin. We use wave power analysis from linearised wave theory to explain prediction errors in the long-period limit during southeasterly conditions. We present a storm analysis of DELWAVE, employing threshold-based metrics of precision and recall to show that DELWAVE reaches a very high score (both metrics over 95 %) of storm detection. SWAN and DELWAVE time series are compared to each other in the end-of-century scenario (2071–2100) and compared to the control conditions in the 1971–2000 period. Good agreement between DELWAVE and SWAN is found when considering climatological statistics, with a small (≤ 5 %), though systematic, underestimate of 99th-percentile values. Compared to control climatology over all wind directions, the mismatch between DELWAVE and SWAN is generally small compared to the difference between scenario and control conditions, suggesting that the noise introduced by surrogate modelling is substantially weaker than the climate change signal.
Ključne besede:surrogate modelling, deep learning, DEep Learning WAVe Emulating model, DELWAVE, Simulating WAves Nearshore, SWAN
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum objave:17.06.2024
Leto izida:2024
Št. strani:str. 4705-4725
Številčenje:Vol. 17, iss. 12
PID:20.500.12556/DiRROS-20061 Novo okno
UDK:004.9
ISSN pri članku:1991-959X
DOI:10.5194/gmd-17-4705-2024 Novo okno
COBISS.SI-ID:203614211 Novo okno
Opomba:Soavtorji: Antonio Ricchi, Sandro Carniel, Davide Bonaldo, and Matjaž Ličer;
Datum objave v DiRROS:05.08.2024
Število ogledov:295
Število prenosov:208
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Geoscientific model development
Skrajšan naslov:Geosci. model dev.
Založnik:Copernicus Publications
ISSN:1991-959X
COBISS.SI-ID:517533209 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P1-0237-2020
Naslov:Raziskave obalnega morja

Financer:Drugi - Drug financer ali več financerjev
Program financ.:PON Ricerca e Innovazione 2014–2020
Številka projekta:DM 1062

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Nazaj