Naslov: | Reliability improvements for in-wheel motor |
---|
Avtorji: | ID Petelin, Gašper, Institut Jožef Stefan (Avtor) ID Hribar, Rok, Institut Jožef Stefan (Avtor) ID Ciglarič, Stane (Avtor) ID Herman, Jernej (Avtor) ID Biasizzo, Anton, Institut Jožef Stefan (Avtor) ID Korošec, Peter, Institut Jožef Stefan (Avtor) ID Papa, Gregor, Institut Jožef Stefan (Avtor) |
Datoteke: | URL - Izvorni URL, za dostop obiščite https://link.springer.com/chapter/10.1007/978-3-031-59361-1_8
PDF - Predstavitvena datoteka. (1,27 MB, Vsebina dokumenta nedostopna do 22.04.2026) MD5: 9F1F599EA21E38556EB03A0CED3A60B9
|
---|
Jezik: | Angleški jezik |
---|
Tipologija: | 1.16 - Samostojni znanstveni sestavek ali poglavje v monografski publikaciji |
---|
Organizacija: | IJS - Institut Jožef Stefan
|
---|
Povzetek: | Setting up a reliable electric propulsion system in the automotive sector requires an intelligent condition monitoring device capable of reliably assessing the state and the health of the electric motor. To allow for a massive integration of such monitoring devices, they must be inexpensive and small. These requirements limit their accuracy. However, we show in this chapter that these limitations can be significantly reduced by appropriate processing of the sensor data. We have used machine learning models (random forest and XGBoost) to transform very noisy motor winding insulation resistance measurements made by a low-cost device into a much more reliable value that can compete with measurements made by a high-priced state-of-the-art measurement system. The proposed method is an important building block for a future smart condition monitoring system and enables a cost-effective and accurate assessment of the condition of electric motor health in connection with the condition of their winding insulation. |
---|
Ključne besede: | machine learning models, low-cost device, electric motor |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Recenzirani rokopis |
---|
Datum objave: | 22.04.2024 |
---|
Založnik: | Springer |
---|
Leto izida: | 2024 |
---|
Št. strani: | 1 spletni vir (1 PDF dokument (197–212 str.)) |
---|
Izvor: | Švica |
---|
PID: | 20.500.12556/DiRROS-19674 |
---|
UDK: | 62 |
---|
DOI: | 10.1007/978-3-031-59361-1_8 |
---|
COBISS.SI-ID: | 202396419 |
---|
Avtorske pravice: | © 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG |
---|
Opomba: | Nasl. z nasl. zaslona;
Opis vira z dne 22. 7. 2024;
|
---|
Datum objave v DiRROS: | 23.07.2024 |
---|
Število ogledov: | 279 |
---|
Število prenosov: | 123 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |