Digitalni repozitorij raziskovalnih organizacij Slovenije

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Adaptive visual quality inspection based on defect prediction from production parameters
Avtorji:ID Lončarević, Zvezdan, Institut Jožef Stefan (Avtor)
ID Reberšek, Simon, Institut Jožef Stefan (Avtor)
ID Šela, Samo (Avtor)
ID Skvarč, Jure (Avtor)
ID Ude, Aleš, Institut Jožef Stefan (Avtor)
ID Gams, Andrej, Institut Jožef Stefan (Avtor)
Datoteke:URL URL - Izvorni URL, za dostop obiščite https://ieeexplore.ieee.org/document/10587254
 
.pdf PDF - Predstavitvena datoteka, prenos (7,44 MB)
MD5: B6EFFB21439897CD974B52FF26B6C1CD
 
Jezik:Angleški jezik
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:Logo IJS - Institut Jožef Stefan
Povzetek:At the end of a production process, the manufactured products must usually be visually inspected to ensure their quality. Often, it is necessary to inspect the final product from several viewpoints. However, the inspection of all possible aspects might take too long and thus create a bottleneck in the production process. In this paper we propose and evaluate a methodology for adaptive, robot-aided visual quality inspection. With the proposed method, the most probable defects are first predicted based on the production process parameters. A suitable classifier for defect prediction is learnt in an unsupervised manner from a database that includes the produced parts and the associated parameters.Arobot then steers the camera only towards viewpoints associated with predicted defects, which implies that the trajectories of robot motion for the inspection might be different for every product. To enable dynamic planning of camera trajectories, we describe a methodology for evaluation and selection of the most appropriate autonomous motion planner. The proposed defect prediction approach was compared to other methods and evaluated on the products from a real-world production line for injection moulding, which was implemented for a producer of parts in the automotive industry.
Ključne besede:robot learning, robotic quality inspection, visual quality inspection, injection moulding, production parameters, robot motion planning
Status publikacije:V tisku
Verzija publikacije:Recenzirani rokopis
Datum objave:08.07.2024
Založnik:IEEE
Leto izida:2024
Št. strani:str. 1-12
Številčenje:Vol. 12
Izvor:ZDA
PID:20.500.12556/DiRROS-19297 Novo okno
UDK:007.52
ISSN pri članku:2169-3536
DOI:10.1109/ACCESS.2024.3424664 Novo okno
COBISS.SI-ID:201318659 Novo okno
Opomba:Nasl. z nasl. zaslona; Soavtorji: Simon Reberšek, Samo Šela, Jure Skvarč, Aleš Ude, Andrej Gams; Opis vira z dne 10. 7. 2024;
Datum objave v DiRROS:15.07.2024
Število ogledov:343
Število prenosov:230
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:IEEE access
Založnik:Institute of Electrical and Electronics Engineers
ISSN:2169-3536
COBISS.SI-ID:519839513 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0076
Naslov:Avtomatika, Robotika in Biokibernetika

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Ministry of Higher Education, Science and Innovation of Slovenia, Slovenian Research and Innovation Agency and European Union – NextGenerationEU
Akronim:DIGITOP

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:08.07.2024

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:vizualni nadzor kakovosti


Nazaj